Experimental and numerical study on mean pressure distributions around an isolated gable roof building with and without openings

Experimental and numerical study on mean pressure distributions around an isolated gable roof... In this study, the influence of opening position and wind direction on pressure distribution around isolated gable roof buildings with and without openings were investigated. Computational Fluid Dynamics (CFD) simulations were performed and compared with wind tunnel experimental results. One of the aims of this study was to develop well-defined design guidelines for typical gable roof structures, identifying critical localised pressure rises due to different wind attack angles. Existing international standards provide limited design guidelines for localised wind pressure distribution of such buildings, especially in cases where there are openings. Wind tunnel experiments were conducted to obtain mean pressure distributions of critical areas of the building under different wind directions with four different opening configurations, namely, an enclosed building, a building with one windward opening, a building with one windward opening and one sidewall opening, and a building with one windward opening and two sidewall openings. A CFD-based numerical simulation approach was used to create a virtual wind tunnel in the computational domain. Sensitivity analyses for grid resolutions and turbulence models of simulations were performed for the building with a windward opening.Results from the numerical simulations show good agreement with the experimental results on pressure distribution. The validated models were used to identify critical areas of the buildings that must be considered in the design stage. The relevant pressure coefficients are presented and compared with the standards. The importance of performing a comprehensive wind study using a numerical approach or wind tunnel tests is highlighted. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Building and Environment Elsevier

Experimental and numerical study on mean pressure distributions around an isolated gable roof building with and without openings

Loading next page...
 
/lp/elsevier/experimental-and-numerical-study-on-mean-pressure-distributions-around-6sTjtomxOR
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0360-1323
D.O.I.
10.1016/j.buildenv.2018.01.027
Publisher site
See Article on Publisher Site

Abstract

In this study, the influence of opening position and wind direction on pressure distribution around isolated gable roof buildings with and without openings were investigated. Computational Fluid Dynamics (CFD) simulations were performed and compared with wind tunnel experimental results. One of the aims of this study was to develop well-defined design guidelines for typical gable roof structures, identifying critical localised pressure rises due to different wind attack angles. Existing international standards provide limited design guidelines for localised wind pressure distribution of such buildings, especially in cases where there are openings. Wind tunnel experiments were conducted to obtain mean pressure distributions of critical areas of the building under different wind directions with four different opening configurations, namely, an enclosed building, a building with one windward opening, a building with one windward opening and one sidewall opening, and a building with one windward opening and two sidewall openings. A CFD-based numerical simulation approach was used to create a virtual wind tunnel in the computational domain. Sensitivity analyses for grid resolutions and turbulence models of simulations were performed for the building with a windward opening.Results from the numerical simulations show good agreement with the experimental results on pressure distribution. The validated models were used to identify critical areas of the buildings that must be considered in the design stage. The relevant pressure coefficients are presented and compared with the standards. The importance of performing a comprehensive wind study using a numerical approach or wind tunnel tests is highlighted.

Journal

Building and EnvironmentElsevier

Published: Mar 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off