Experimental and numerical studies on indentation and perforation characteristics of honeycomb sandwich panels

Experimental and numerical studies on indentation and perforation characteristics of honeycomb... Aluminum sandwich panels with honeycomb core have been widely used as energy absorption structure in lightweight design. This study aimed to characterize the indentation and perforation behaviors of sandwich structures with different geometric configurations. The specimens with four characteristic geometric variables, namely, facesheet thickness, core height, honeycomb core thickness and side length of hexagon cell were tested experimentally. Photographs of cross-sectional view near the loading area and failure modes in the tests were investigated in detail. For the first time, digital image correlation (DIC) technique through an ARAMIS™ real-time optical strain measurement system was adopted for capturing the deformation process of lower skin by acquiring the displacement-time data. Three typical damage modes were identified from the force-displacement curves with different geometric parameters and configurations. It was found that the thickness of facesheet has the most significant effects on both force-displacement curves and energy absorption capacity. Changes in the core parameters have relatively small influences in total energy absorption but sizeable effects on the force-displacement curve and failure modes. A finite element model for predicting damage evolution was also developed and validated through the force-displacement relation and deformation process on the bottom skin. The damage mechanisms of the sandwich panel subject to quasi-static indentation and perforation were analyzed through the numerical models. The present study contributed on understanding how the geometric parameters affect the characteristics of indentation and perforation, thereby providing useful guidelines for its potential applications in impact engineering. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Composite Structures Elsevier

Experimental and numerical studies on indentation and perforation characteristics of honeycomb sandwich panels

Loading next page...
 
/lp/elsevier/experimental-and-numerical-studies-on-indentation-and-perforation-AuCB0mrCZl
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0263-8223
eISSN
1879-1085
D.O.I.
10.1016/j.compstruct.2017.09.025
Publisher site
See Article on Publisher Site

Abstract

Aluminum sandwich panels with honeycomb core have been widely used as energy absorption structure in lightweight design. This study aimed to characterize the indentation and perforation behaviors of sandwich structures with different geometric configurations. The specimens with four characteristic geometric variables, namely, facesheet thickness, core height, honeycomb core thickness and side length of hexagon cell were tested experimentally. Photographs of cross-sectional view near the loading area and failure modes in the tests were investigated in detail. For the first time, digital image correlation (DIC) technique through an ARAMIS™ real-time optical strain measurement system was adopted for capturing the deformation process of lower skin by acquiring the displacement-time data. Three typical damage modes were identified from the force-displacement curves with different geometric parameters and configurations. It was found that the thickness of facesheet has the most significant effects on both force-displacement curves and energy absorption capacity. Changes in the core parameters have relatively small influences in total energy absorption but sizeable effects on the force-displacement curve and failure modes. A finite element model for predicting damage evolution was also developed and validated through the force-displacement relation and deformation process on the bottom skin. The damage mechanisms of the sandwich panel subject to quasi-static indentation and perforation were analyzed through the numerical models. The present study contributed on understanding how the geometric parameters affect the characteristics of indentation and perforation, thereby providing useful guidelines for its potential applications in impact engineering.

Journal

Composite StructuresElsevier

Published: Jan 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off