Experimental and numerical investigation on dynamic properties of thin-walled GFRP buckled columns

Experimental and numerical investigation on dynamic properties of thin-walled GFRP buckled columns this paper analyses the numerical and experimental results to evaluate the dynamic properties of pultruded GFRP (Glass-Fiber Reinforced Polymers) buckled columns. The profiles are made of glass fiber reinforcement and thermosetting vinylester matrix with thin-walled open or closed cross section. The buckling phenomena of the column with fixed ends were evaluated with a non-destructive method based on experimental modal data through dynamic identification procedure.Numerical analysis has been carried out through Finite Element models calibrated considering two consecutive stages that involve the local and global scale: i) parametric natural frequencies analysis to model the different cross sections taking into account the stiffness of the rotational constraint between the wall segments of the thin walled pultruded profiles; ii) buckling analysis to identify the inaccuracies in the specimen or in the experimental apparatus through global flexural displacements which increase continuously with the axial load.Experimental, theoretical and numerical results were compared in order to know the wall segment effects of GFRP columns in free vibration field when affected by buckling phenomena.The results allow to investigate the significant role that the manufacturing imperfections of pultruded material play in the structural performance of GFRP buckled columns. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Composite Structures Elsevier

Experimental and numerical investigation on dynamic properties of thin-walled GFRP buckled columns

Loading next page...
 
/lp/elsevier/experimental-and-numerical-investigation-on-dynamic-properties-of-thin-fQgmNk0q0i
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0263-8223
eISSN
1879-1085
D.O.I.
10.1016/j.compstruct.2018.01.061
Publisher site
See Article on Publisher Site

Abstract

this paper analyses the numerical and experimental results to evaluate the dynamic properties of pultruded GFRP (Glass-Fiber Reinforced Polymers) buckled columns. The profiles are made of glass fiber reinforcement and thermosetting vinylester matrix with thin-walled open or closed cross section. The buckling phenomena of the column with fixed ends were evaluated with a non-destructive method based on experimental modal data through dynamic identification procedure.Numerical analysis has been carried out through Finite Element models calibrated considering two consecutive stages that involve the local and global scale: i) parametric natural frequencies analysis to model the different cross sections taking into account the stiffness of the rotational constraint between the wall segments of the thin walled pultruded profiles; ii) buckling analysis to identify the inaccuracies in the specimen or in the experimental apparatus through global flexural displacements which increase continuously with the axial load.Experimental, theoretical and numerical results were compared in order to know the wall segment effects of GFRP columns in free vibration field when affected by buckling phenomena.The results allow to investigate the significant role that the manufacturing imperfections of pultruded material play in the structural performance of GFRP buckled columns.

Journal

Composite StructuresElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off