Experimental and multi-scale numerical evaluations for effective mechanical properties of 2-D Cf/Mg composites

Experimental and multi-scale numerical evaluations for effective mechanical properties of 2-D... 2-D Cf/Mg composites consisting of AZ91D magnesium alloy and carbon non-woven fabrics are prepared by using the LSEVI process and their mechanical properties are experimentally tested. The experimental results show that the 2-D Cf/Mg composites have the better mechanical properties: elastic modulus of 71.0 GPa and ultimate tensile strength of 366.0 MPa, compared to AZ91D magnesium alloy matrix with the elastic modulus of 45.0 GPa and ultimate tensile strength of 250.0 MPa. The effective elastic properties of the 2-D Cf/Mg composites are numerically predicted by using a multi-scale homogenization method: the RVE based FE homogenization method at the macro-scale coupling the D-I mean-field homogenization model at the micro-scale. The agreement between the results of the experimental tests and the multi-scale homogenization method illustrates the validation of the multi-scale homogenization method to evaluate the effective mechanical properties of the 2-D Cf/Mg composites. For improving the computational efficiency, at the macro-scale the laminated composites theory is coupled with the RVE based FE homogenization method to predict the effective mechanical properties of the 2-D Cf/Mg composites. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Composite Structures Elsevier

Experimental and multi-scale numerical evaluations for effective mechanical properties of 2-D Cf/Mg composites

Loading next page...
 
/lp/elsevier/experimental-and-multi-scale-numerical-evaluations-for-effective-0PHWkTgvQV
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0263-8223
eISSN
1879-1085
D.O.I.
10.1016/j.compstruct.2018.01.032
Publisher site
See Article on Publisher Site

Abstract

2-D Cf/Mg composites consisting of AZ91D magnesium alloy and carbon non-woven fabrics are prepared by using the LSEVI process and their mechanical properties are experimentally tested. The experimental results show that the 2-D Cf/Mg composites have the better mechanical properties: elastic modulus of 71.0 GPa and ultimate tensile strength of 366.0 MPa, compared to AZ91D magnesium alloy matrix with the elastic modulus of 45.0 GPa and ultimate tensile strength of 250.0 MPa. The effective elastic properties of the 2-D Cf/Mg composites are numerically predicted by using a multi-scale homogenization method: the RVE based FE homogenization method at the macro-scale coupling the D-I mean-field homogenization model at the micro-scale. The agreement between the results of the experimental tests and the multi-scale homogenization method illustrates the validation of the multi-scale homogenization method to evaluate the effective mechanical properties of the 2-D Cf/Mg composites. For improving the computational efficiency, at the macro-scale the laminated composites theory is coupled with the RVE based FE homogenization method to predict the effective mechanical properties of the 2-D Cf/Mg composites.

Journal

Composite StructuresElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off