Experimental analysis of the flow field around horizontal axis tidal turbines by use of scale mesh disk rotor simulators

Experimental analysis of the flow field around horizontal axis tidal turbines by use of scale... Understanding the flow field around horizontal axis marine current turbines is important if this new energy generation technology is to advance. The aim of this work is to identify and provide an understanding of the principal parameters that govern the downstream wake structure and its recovery to the free-stream velocity profile. This will allow large farms or arrays of devices to be installed whilst maximising device and array efficiency. Wake characteristics of small-scale mesh disk rotor simulators have been measured in a 21 m tilting flume at the University of Southampton. The results indicate that wake velocities are reduced in the near wake region (close behind the rotor disk) for increasing levels of disk thrust. Further downstream all normalised wake velocity values converge, enforcing that, as for wind turbines, far wake recovery is a function of the ambient flow turbulence. Varying the disk proximity to the water surface/bed introduces differential mass flow rates above and below the rotor disk that can cause the wake to persist much further downstream. Finally, the introduction of increased sea bed roughness whilst increasing the depth-averaged ambient turbulence actually decreases downstream wake velocities. Results presented demonstrate that there are a number of interdependent variables that affect the rate of wake recovery and will have a significant impact on the spacing of marine current turbines within an array. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ocean Engineering Elsevier

Experimental analysis of the flow field around horizontal axis tidal turbines by use of scale mesh disk rotor simulators

Ocean Engineering, Volume 37 (2) – Feb 1, 2010

Loading next page...
 
/lp/elsevier/experimental-analysis-of-the-flow-field-around-horizontal-axis-tidal-Flvt7bYGI6
Publisher
Elsevier
Copyright
Copyright © 2009 Elsevier Ltd
ISSN
0029-8018
eISSN
1873-5258
D.O.I.
10.1016/j.oceaneng.2009.11.004
Publisher site
See Article on Publisher Site

Abstract

Understanding the flow field around horizontal axis marine current turbines is important if this new energy generation technology is to advance. The aim of this work is to identify and provide an understanding of the principal parameters that govern the downstream wake structure and its recovery to the free-stream velocity profile. This will allow large farms or arrays of devices to be installed whilst maximising device and array efficiency. Wake characteristics of small-scale mesh disk rotor simulators have been measured in a 21 m tilting flume at the University of Southampton. The results indicate that wake velocities are reduced in the near wake region (close behind the rotor disk) for increasing levels of disk thrust. Further downstream all normalised wake velocity values converge, enforcing that, as for wind turbines, far wake recovery is a function of the ambient flow turbulence. Varying the disk proximity to the water surface/bed introduces differential mass flow rates above and below the rotor disk that can cause the wake to persist much further downstream. Finally, the introduction of increased sea bed roughness whilst increasing the depth-averaged ambient turbulence actually decreases downstream wake velocities. Results presented demonstrate that there are a number of interdependent variables that affect the rate of wake recovery and will have a significant impact on the spacing of marine current turbines within an array.

Journal

Ocean EngineeringElsevier

Published: Feb 1, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off