Excited-state intramolecular proton transfer in non-fused five- and fused six-membered ring pyrrole-pyridine hydrogen bond systems

Excited-state intramolecular proton transfer in non-fused five- and fused six-membered ring... The non-fused five-membered ring structure of 2-(1H-pyrrol-2-yl)pyridine (5-HB) is more flexible than the fused six-membered ring structure of 10,11,12,13-tetrahydro-9H-quinolino[8,7-a]carbazole (6-HB) to form the intramolecular hydrogen bond between pyrrole and pyridine, while the six-membered ring structure possesses more favorable distance and orientation between pyrrole and pyridine. In the present work, we carried out the electronic structure calculations and nonadiabatic dynamics simulations to gain insight into the effect of different structure feature on the excited-state intramolecular proton transfer (ESIPT) processes of 5-HB and 6-HB. The geometric parameters, IR vibrational spectra, bond critical point (BCP) parameters and reduced density gradient (RDG) show that the intramolecular hydrogen bond of 6-HB is much stronger than that of 5-HB. The 6-HB has a lower kinetic stability and a higher chemical activity than 5-HB through the analysis of the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). The pyridine N1 atom of 6-HB shows much stronger ability than that of 5-HB to attract the hydrogen proton based on the natural population analysis (NPA). The analysis of the potential energy curves and time evolution of selected bond distances indicate that the ESIPT process of fused six-membered ring structure is easier and faster than the non-fused five-membered ring structure. Our findings might be useful for the design of relevant ESIPT systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Organic Electronics Elsevier

Excited-state intramolecular proton transfer in non-fused five- and fused six-membered ring pyrrole-pyridine hydrogen bond systems

Loading next page...
 
/lp/elsevier/excited-state-intramolecular-proton-transfer-in-non-fused-five-and-bKTVyOtQfZ
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier B.V.
ISSN
1566-1199
D.O.I.
10.1016/j.orgel.2017.12.043
Publisher site
See Article on Publisher Site

Abstract

The non-fused five-membered ring structure of 2-(1H-pyrrol-2-yl)pyridine (5-HB) is more flexible than the fused six-membered ring structure of 10,11,12,13-tetrahydro-9H-quinolino[8,7-a]carbazole (6-HB) to form the intramolecular hydrogen bond between pyrrole and pyridine, while the six-membered ring structure possesses more favorable distance and orientation between pyrrole and pyridine. In the present work, we carried out the electronic structure calculations and nonadiabatic dynamics simulations to gain insight into the effect of different structure feature on the excited-state intramolecular proton transfer (ESIPT) processes of 5-HB and 6-HB. The geometric parameters, IR vibrational spectra, bond critical point (BCP) parameters and reduced density gradient (RDG) show that the intramolecular hydrogen bond of 6-HB is much stronger than that of 5-HB. The 6-HB has a lower kinetic stability and a higher chemical activity than 5-HB through the analysis of the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). The pyridine N1 atom of 6-HB shows much stronger ability than that of 5-HB to attract the hydrogen proton based on the natural population analysis (NPA). The analysis of the potential energy curves and time evolution of selected bond distances indicate that the ESIPT process of fused six-membered ring structure is easier and faster than the non-fused five-membered ring structure. Our findings might be useful for the design of relevant ESIPT systems.

Journal

Organic ElectronicsElsevier

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off