Examining the effects of cholesterol on model membranes at high temperatures: Laurdan and Patman see it differently

Examining the effects of cholesterol on model membranes at high temperatures: Laurdan and Patman... At high temperature, the presence of cholesterol in phospholipid membranes alters the influence of membrane dipoles, including water molecules, on naphthalene-based fluorescent probes such as Laurdan and Patman (solvatochromism). Although both of these probes report identical changes to their emission spectra as a function of temperature in pure phosphatidylcholine bilayers, they differ in their response to cholesterol. Computer simulations of the spectra based on a simple model of solvatochromism indicated that the presence of cholesterol reduces the probability of bilayer dipole relaxation and also blunts the tendency of heat to enhance that probability. While the overall effect of cholesterol on membrane dipoles was detected identically by the two probes, Laurdan was influenced much more by the additional effect on temperature sensitivity than was Patman. A comparison of the fluorescence data with simulations using a coarse-grained bilayer model (de Meyer et al., 2010) suggested that these probes may be differentially sensitive to two closely related properties distinguishable in the presence of cholesterol. Specifically, Patman fluorescence correlated best with the average phospholipid acyl chain order. On the other hand, Laurdan fluorescence tracked more closely with the area per lipid molecule which, although affected generally by chain order, is also impacted by additional membrane-condensing effects of cholesterol. We postulate that this difference between Laurdan and Patman may be attributed to the bulkier charged headgroup of Patman which may cause the probe to preferentially locate in juxtaposition to the diminutive headgroup of cholesterol as the membrane condenses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochimica et Biophysica Acta Biomembranes Or Bba Biomembranes Elsevier

Examining the effects of cholesterol on model membranes at high temperatures: Laurdan and Patman see it differently

Loading next page...
 
/lp/elsevier/examining-the-effects-of-cholesterol-on-model-membranes-at-high-b7MNp43Ox0
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0005-2736
eISSN
1879-2642
D.O.I.
10.1016/j.bbamem.2018.05.013
Publisher site
See Article on Publisher Site

Abstract

At high temperature, the presence of cholesterol in phospholipid membranes alters the influence of membrane dipoles, including water molecules, on naphthalene-based fluorescent probes such as Laurdan and Patman (solvatochromism). Although both of these probes report identical changes to their emission spectra as a function of temperature in pure phosphatidylcholine bilayers, they differ in their response to cholesterol. Computer simulations of the spectra based on a simple model of solvatochromism indicated that the presence of cholesterol reduces the probability of bilayer dipole relaxation and also blunts the tendency of heat to enhance that probability. While the overall effect of cholesterol on membrane dipoles was detected identically by the two probes, Laurdan was influenced much more by the additional effect on temperature sensitivity than was Patman. A comparison of the fluorescence data with simulations using a coarse-grained bilayer model (de Meyer et al., 2010) suggested that these probes may be differentially sensitive to two closely related properties distinguishable in the presence of cholesterol. Specifically, Patman fluorescence correlated best with the average phospholipid acyl chain order. On the other hand, Laurdan fluorescence tracked more closely with the area per lipid molecule which, although affected generally by chain order, is also impacted by additional membrane-condensing effects of cholesterol. We postulate that this difference between Laurdan and Patman may be attributed to the bulkier charged headgroup of Patman which may cause the probe to preferentially locate in juxtaposition to the diminutive headgroup of cholesterol as the membrane condenses.

Journal

Biochimica et Biophysica Acta Biomembranes Or Bba BiomembranesElsevier

Published: Aug 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off