Evolutionary response of a native butterfly to concurrent plant invasions: Simulation of population dynamics

Evolutionary response of a native butterfly to concurrent plant invasions: Simulation of... The habitat of the green-veined white butterfly Pieris oleracea in eastern North America has undergone invasions by the exotic plant garlic mustard (Alliaria petiolata), which is replacing native hosts of P. oleracea such as Cardamine diphylla. A. petiolata was originally lethal to most larvae of the native butterfly but during the past 20+ years it has been incorporated successfully into the larval diet, likely through evolutionary change. The region was also invaded by another exotic plant, Cardamine pratensis, on which the native butterfly larvae readily develops, allowing the possibility of population rescue. Further complicating the butterfly's reproductive dynamics, it is multigenerational within a summer, and host plant availability and location change during the summer. Our goal is to model the expected dynamics of the native butterfly population in this evolving, dynamic landscape by using a new bio-inspired paradigm known as membrane computing.In this context, a Probabilistic Guarded Scripted P system has been designed to model and explore the conditions under which an allele conferring ability of P. oleracea larvae to develop on A. petiolata might have proliferated. The design describes a population dynamics model whose parameter values are derived from experimental and observational data. Our modeling framework is spatially explicit and our model integrates seasonal as well as annual dynamics. The simulation results from our model qualitatively match our field observations and experimental laboratory results, and agree with the results from a previous model on the genotypic adaptation of this butterfly species. From the simulations we identified the likely trajectories for the spatio-temporal distribution of alleles enabling P. oleracea to use the invasive plant species across this selective and phenological mosaic. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecological Modelling Elsevier

Evolutionary response of a native butterfly to concurrent plant invasions: Simulation of population dynamics

Loading next page...
 
/lp/elsevier/evolutionary-response-of-a-native-butterfly-to-concurrent-plant-Hhj3xGRm62
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier B.V.
ISSN
0304-3800
eISSN
1872-7026
D.O.I.
10.1016/j.ecolmodel.2017.06.030
Publisher site
See Article on Publisher Site

Abstract

The habitat of the green-veined white butterfly Pieris oleracea in eastern North America has undergone invasions by the exotic plant garlic mustard (Alliaria petiolata), which is replacing native hosts of P. oleracea such as Cardamine diphylla. A. petiolata was originally lethal to most larvae of the native butterfly but during the past 20+ years it has been incorporated successfully into the larval diet, likely through evolutionary change. The region was also invaded by another exotic plant, Cardamine pratensis, on which the native butterfly larvae readily develops, allowing the possibility of population rescue. Further complicating the butterfly's reproductive dynamics, it is multigenerational within a summer, and host plant availability and location change during the summer. Our goal is to model the expected dynamics of the native butterfly population in this evolving, dynamic landscape by using a new bio-inspired paradigm known as membrane computing.In this context, a Probabilistic Guarded Scripted P system has been designed to model and explore the conditions under which an allele conferring ability of P. oleracea larvae to develop on A. petiolata might have proliferated. The design describes a population dynamics model whose parameter values are derived from experimental and observational data. Our modeling framework is spatially explicit and our model integrates seasonal as well as annual dynamics. The simulation results from our model qualitatively match our field observations and experimental laboratory results, and agree with the results from a previous model on the genotypic adaptation of this butterfly species. From the simulations we identified the likely trajectories for the spatio-temporal distribution of alleles enabling P. oleracea to use the invasive plant species across this selective and phenological mosaic.

Journal

Ecological ModellingElsevier

Published: Sep 24, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off