Evolutionary design of strong and stable high entropy alloys using multi-objective optimisation based on physical models, statistics and thermodynamics

Evolutionary design of strong and stable high entropy alloys using multi-objective optimisation... A new integrated computational HEA design strategy is proposed. It combines a multi-objective genetic algorithm with (i) statistical criteria to guide the formation of a single phase, supplemented by computational thermodynamics (Thermo-Calc) and (ii) models for the estimation of alloy yield stress via solid solution hardening, to be maximised, and alloy density, to be minimised. This strategy is applied to the design of face-centered-cubic (FCC) HEAs and yields several thousands of new alloys. An alloy featuring an interesting combination of predicted stability, strength and density, Al10Co17Fe34Mo5Ni34 (at%), is chosen among them, fabricated by vacuum arc melting and experimentally tested. The microstructure of this new HEA consists in a single FCC solid solution, as evidenced by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS) mapping. With a density of 7.95 g⋅cm- 3, a Vickers hardness of 1.78 GPa, a yield stress of 215 MPa and an ultimate tensile strength of 665 MPa in the annealed state, its properties surpass those of existing FCC HEAs of comparable density. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Materials & design Elsevier

Evolutionary design of strong and stable high entropy alloys using multi-objective optimisation based on physical models, statistics and thermodynamics

Loading next page...
 
/lp/elsevier/evolutionary-design-of-strong-and-stable-high-entropy-alloys-using-9DX4eiAC9f
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0264-1275
eISSN
0141-5530
D.O.I.
10.1016/j.matdes.2018.01.045
Publisher site
See Article on Publisher Site

Abstract

A new integrated computational HEA design strategy is proposed. It combines a multi-objective genetic algorithm with (i) statistical criteria to guide the formation of a single phase, supplemented by computational thermodynamics (Thermo-Calc) and (ii) models for the estimation of alloy yield stress via solid solution hardening, to be maximised, and alloy density, to be minimised. This strategy is applied to the design of face-centered-cubic (FCC) HEAs and yields several thousands of new alloys. An alloy featuring an interesting combination of predicted stability, strength and density, Al10Co17Fe34Mo5Ni34 (at%), is chosen among them, fabricated by vacuum arc melting and experimentally tested. The microstructure of this new HEA consists in a single FCC solid solution, as evidenced by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS) mapping. With a density of 7.95 g⋅cm- 3, a Vickers hardness of 1.78 GPa, a yield stress of 215 MPa and an ultimate tensile strength of 665 MPa in the annealed state, its properties surpass those of existing FCC HEAs of comparable density.

Journal

Materials & designElsevier

Published: Apr 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off