Evolution of methicillin-resistant Staphylococcus aureus: Evidence of positive selection in a penicillin-binding protein (PBP) 2a coding gene mecA

Evolution of methicillin-resistant Staphylococcus aureus: Evidence of positive selection in a... Methicillin-resistant Staphylococcus aureus (S. aureus) (MRSA) represents more and more S. aureus infections. MecA, the novel coding gene of penicillin-binding protein (PBP) 2a of MRSA, is the key resistance factor of β-lactam, but little is known about the evolution of this gene. Given the crucial role of mecA in S. aureus physiology and β-lactam resistance, the selective forces may contribute to adaptation of the bacteria to the special environments such as its host or antibiotics. To understand the evolution of this gene, we screened GenBank database and analyzed mecA of 249 S. aureus strains. Twenty-nine unique alleles with 26 unique amino acid sequences were identified. Phylogenetic analysis showed three main groups of mecA in the global S. aureus strains. Analysis of these alleles using codon-substitution models (M8, M3, and M2a) and likelihood ratio tests (LRTs) of the codeML package and a random-effects likelihood (REL) method of HyPhy package for the site-specific ratio of nonsynonymous to synonymous substitution rates suggested that fourteen sites in the allosteric domain of PBP2a have been subjected to strong positive selection pressure. Mutations of two positive selection sites (N146K and E239K) were reported to be essential for ceftaroline- or L-695, 256-resistant. Further study indicated that the positive selection pressure might be more likely related to the host's inflammatory or immune response during S. aureus infection. Our studies provide the first evidence of positive Darwinian selection in the mecA of S. aureus, contributing to a better understanding of the adaptive mechanism of this bacterium. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Infection, Genetics and Evolution Elsevier

Evolution of methicillin-resistant Staphylococcus aureus: Evidence of positive selection in a penicillin-binding protein (PBP) 2a coding gene mecA

Loading next page...
 
/lp/elsevier/evolution-of-methicillin-resistant-staphylococcus-aureus-evidence-of-8LGBxSExym
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
1567-1348
D.O.I.
10.1016/j.meegid.2018.01.018
Publisher site
See Article on Publisher Site

Abstract

Methicillin-resistant Staphylococcus aureus (S. aureus) (MRSA) represents more and more S. aureus infections. MecA, the novel coding gene of penicillin-binding protein (PBP) 2a of MRSA, is the key resistance factor of β-lactam, but little is known about the evolution of this gene. Given the crucial role of mecA in S. aureus physiology and β-lactam resistance, the selective forces may contribute to adaptation of the bacteria to the special environments such as its host or antibiotics. To understand the evolution of this gene, we screened GenBank database and analyzed mecA of 249 S. aureus strains. Twenty-nine unique alleles with 26 unique amino acid sequences were identified. Phylogenetic analysis showed three main groups of mecA in the global S. aureus strains. Analysis of these alleles using codon-substitution models (M8, M3, and M2a) and likelihood ratio tests (LRTs) of the codeML package and a random-effects likelihood (REL) method of HyPhy package for the site-specific ratio of nonsynonymous to synonymous substitution rates suggested that fourteen sites in the allosteric domain of PBP2a have been subjected to strong positive selection pressure. Mutations of two positive selection sites (N146K and E239K) were reported to be essential for ceftaroline- or L-695, 256-resistant. Further study indicated that the positive selection pressure might be more likely related to the host's inflammatory or immune response during S. aureus infection. Our studies provide the first evidence of positive Darwinian selection in the mecA of S. aureus, contributing to a better understanding of the adaptive mechanism of this bacterium.

Journal

Infection, Genetics and EvolutionElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off