Bacteriophage capsids are a striking example of a robust yet dynamic genome delivery vehicle. Like most phages, HK97 undergoes a conformational maturation that converts a metastable Prohead into the mature Head state. In the case of HK97, maturation involves a significant expansion of the capsid and concomitant cross-linking of capsid subunits. The final state, termed Head-II, is a 600 Å diameter icosahedral structure with catenated subunit rings. Cryo-EM, small angle X-ray scattering (SAXS), and biochemical assays were used previously to characterize the initial (Prohead-II) and final states (Head-II) as well as four maturation intermediates. Here we extend the characterization of the acid-induced expansion of HK97 in vitro by monitoring changes in intrinsic fluorescence, circular dichroism (CD), and SAXS. We find that the greatest changes in all observables occur at an early stage of maturation. Upon acidification, fluorescence emissions from HK97 exhibit a blueshift and decrease in intensity. These spectral changes reveal two kinetic phases of the expansion reaction. The early phase exhibits sensitivity to pH, increasing in rate nearly 200-fold when acidification pH is lowered from 4.5 to 3.9. The second, slower phase reported by fluorescence is relatively insensitive to pH. Time-resolved SAXS experiments report an increase in overall particle dimension that parallels the fluorescence changes for the early phase. Native agarose gel assays corroborated this finding. By contrast, probes of CD at far-UV indicate that secondary structural changes precede the early expansion phase reported by SAXS and fluorescence. Based on the crystallographic structure of Head-II and the pseudo-atomic model of Prohead-II, we interpret these changes as reflecting the conversion of subunit N-terminal arms (N-arm) from unstructured polypeptide to the mixture of β-strand and β-turn observed in the Head-II crystal structure. Refolding of the N-arm may thus represent the conformational trigger that initiates the irreversible expansion of the phage capsid.
Journal of Molecular Biology – Elsevier
Published: Jul 9, 2004
It’s your single place to instantly
discover and read the research
that matters to you.
Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.
All for just $49/month
Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly
Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.
Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.
Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.
All the latest content is available, no embargo periods.
“Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”
Daniel C.
“Whoa! It’s like Spotify but for academic articles.”
@Phil_Robichaud
“I must say, @deepdyve is a fabulous solution to the independent researcher's problem of #access to #information.”
@deepthiw
“My last article couldn't be possible without the platform @deepdyve that makes journal papers cheaper.”
@JoseServera
DeepDyve Freelancer | DeepDyve Pro | |
---|---|---|
Price | FREE | $49/month |
Save searches from | ||
Create folders to | ||
Export folders, citations | ||
Read DeepDyve articles | Abstract access only | Unlimited access to over |
20 pages / month | ||
PDF Discount | 20% off | |
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
EndNote
Export to EndNoteAll DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.
ok to continue