Evidence of indirect impacts of introduced trout on native amphibians via facilitation of a shared predator

Evidence of indirect impacts of introduced trout on native amphibians via facilitation of a... Hyperpredation occurs when non-native prey facilitate invasive predators, which then suppress native prey. Direct impacts of introduced fish on amphibians are well studied, but the role of fish in supporting shared predators has not been considered. We present evidence for indirect effects of trout on amphibians through snake predation. Analyses of the diet, distribution and density of the Pacific coast aquatic garter snake ( Thamnophis atratus ) relative to the sympatric common garter snake ( Thamnophis sirtalis ) in the Klamath Mountains of California suggest that trout introductions facilitated expansion of T. atratus by providing alternative prey. T. atratus diet included trout and amphibians whereas T. sirtalis preyed solely upon amphibians. The distribution and density of T. atratus matched that of introduced trout instead of native amphibians. Populations of T. atratus could reach high densities in the absence of high densities of amphibians. When the snakes opportunistically prey upon amphibians whose numbers are already directly impacted by trout, they can cause significant additional declines. When T. atratus was present in lake basins, native Cascades frogs ( Rana cascadae ) were rarer than in basins without T. atratus . This case differs from other hyperpredation studies because the two prey species also interact via intraguild predation. Given the worldwide practice of stocking fish into aquatic habitats, it is important to understand the consequences of the practice on food-web structure and ecosystem functioning. Bottom-up impacts of introduced predators should be considered as well as top-down so that managers can incorporate the range of ecosystem-level effects into conservation goals and decisions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biological Conservation Elsevier

Evidence of indirect impacts of introduced trout on native amphibians via facilitation of a shared predator

Loading next page...
 
/lp/elsevier/evidence-of-indirect-impacts-of-introduced-trout-on-native-amphibians-4gerYbZQV1
Publisher
Elsevier
Copyright
Copyright © 2008 Elsevier Ltd
ISSN
0006-3207
DOI
10.1016/j.biocon.2008.03.008
Publisher site
See Article on Publisher Site

Abstract

Hyperpredation occurs when non-native prey facilitate invasive predators, which then suppress native prey. Direct impacts of introduced fish on amphibians are well studied, but the role of fish in supporting shared predators has not been considered. We present evidence for indirect effects of trout on amphibians through snake predation. Analyses of the diet, distribution and density of the Pacific coast aquatic garter snake ( Thamnophis atratus ) relative to the sympatric common garter snake ( Thamnophis sirtalis ) in the Klamath Mountains of California suggest that trout introductions facilitated expansion of T. atratus by providing alternative prey. T. atratus diet included trout and amphibians whereas T. sirtalis preyed solely upon amphibians. The distribution and density of T. atratus matched that of introduced trout instead of native amphibians. Populations of T. atratus could reach high densities in the absence of high densities of amphibians. When the snakes opportunistically prey upon amphibians whose numbers are already directly impacted by trout, they can cause significant additional declines. When T. atratus was present in lake basins, native Cascades frogs ( Rana cascadae ) were rarer than in basins without T. atratus . This case differs from other hyperpredation studies because the two prey species also interact via intraguild predation. Given the worldwide practice of stocking fish into aquatic habitats, it is important to understand the consequences of the practice on food-web structure and ecosystem functioning. Bottom-up impacts of introduced predators should be considered as well as top-down so that managers can incorporate the range of ecosystem-level effects into conservation goals and decisions.

Journal

Biological ConservationElsevier

Published: May 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off