Event-triggered resilient filtering with measurement quantization and random sensor failures: Monotonicity and convergence

Event-triggered resilient filtering with measurement quantization and random sensor failures:... This paper is concerned with the remote state estimation problem for a class of discrete-time stochastic systems. An event-triggered scheme is exploited to regulate the sensor-to-estimator communication in order to preserve limited network resources. A situation is considered where the sensors are susceptible to possible failures and the signals are quantized before entering the network. Furthermore, the resilience issue for the filter design is taken into account in order to accommodate the possible gain variations in the course of filter implementation. In the simultaneous presence of measurement quantizations, sensor failures and gain variations, an event-triggered filter is designed to minimize certain upper bound of the covariance of the estimation error in terms of the solution to Riccati-like difference equations. Further analysis demonstrates the monotonicity of the minimized upper bound with respect to the value of thresholds. Subsequently, a sufficient condition is also established for the convergence of the steady-state filter. A numerical example is presented to verify the effectiveness of the proposed filtering algorithm. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Automatica Elsevier

Event-triggered resilient filtering with measurement quantization and random sensor failures: Monotonicity and convergence

Loading next page...
 
/lp/elsevier/event-triggered-resilient-filtering-with-measurement-quantization-and-9KkN69UsYG
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0005-1098
D.O.I.
10.1016/j.automatica.2018.03.031
Publisher site
See Article on Publisher Site

Abstract

This paper is concerned with the remote state estimation problem for a class of discrete-time stochastic systems. An event-triggered scheme is exploited to regulate the sensor-to-estimator communication in order to preserve limited network resources. A situation is considered where the sensors are susceptible to possible failures and the signals are quantized before entering the network. Furthermore, the resilience issue for the filter design is taken into account in order to accommodate the possible gain variations in the course of filter implementation. In the simultaneous presence of measurement quantizations, sensor failures and gain variations, an event-triggered filter is designed to minimize certain upper bound of the covariance of the estimation error in terms of the solution to Riccati-like difference equations. Further analysis demonstrates the monotonicity of the minimized upper bound with respect to the value of thresholds. Subsequently, a sufficient condition is also established for the convergence of the steady-state filter. A numerical example is presented to verify the effectiveness of the proposed filtering algorithm.

Journal

AutomaticaElsevier

Published: Aug 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off