Evaluation of the toxic response induced by azoxystrobin in the non-target green alga Chlorella pyrenoidosa

Evaluation of the toxic response induced by azoxystrobin in the non-target green alga Chlorella... The top-selling strobilurin, azoxystrobin (AZ), is a broad-spectrum fungicide that protects against many kinds of pathogenic fungi by preventing their ATP production. The extensive use of AZ can have negative consequences on non-target species and its effects and toxic mechanisms on algae are still poorly understood. In this work, Chlorella pyrenoidosa that had been grown in BG-11 medium was exposed to AZ (0.5–10 mg L−1) for 10 d. The physiological and molecular responses of the algae to AZ treatment, including photosynthetic efficiency, lipid peroxidation level, antioxidant enzyme activities, as well as transcriptome-based analysis of gene expression, were examined to investigate the potential toxic mechanism. Results shows that the photosynthetic pigment (per cell) increased slightly after AZ treatments, indicating that the photosystem of C. pyrenoidosa may have been strengthened. Glutathione and ascorbate contents were increased, and antioxidant enzyme activities were induced to relieve oxidative damage (e.g., from lipid peroxidation) in algae after AZ treatment. Transcriptome-based analysis of gene expression combined with physiological verification suggested that the 5 mg L−1 AZ treatment did not inhibit ATP generation in C. pyrenoidosa, but did significantly alter amino acid metabolism, especially in aspartate- and glutamine-related reactions. Moreover, perturbation of ascorbate synthesis, fat acid metabolism, and RNA translation was also observed, suggesting that AZ inhibits algal cell growth through multiple pathways. The identification of AZ-responsive genes in the eukaryotic alga C. pyrenoidosa provides new insight into AZ stress responses in a non-target organism. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Pollution Elsevier

Evaluation of the toxic response induced by azoxystrobin in the non-target green alga Chlorella pyrenoidosa

Loading next page...
 
/lp/elsevier/evaluation-of-the-toxic-response-induced-by-azoxystrobin-in-the-non-0MyipxMRdz
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0269-7491
D.O.I.
10.1016/j.envpol.2017.11.081
Publisher site
See Article on Publisher Site

Abstract

The top-selling strobilurin, azoxystrobin (AZ), is a broad-spectrum fungicide that protects against many kinds of pathogenic fungi by preventing their ATP production. The extensive use of AZ can have negative consequences on non-target species and its effects and toxic mechanisms on algae are still poorly understood. In this work, Chlorella pyrenoidosa that had been grown in BG-11 medium was exposed to AZ (0.5–10 mg L−1) for 10 d. The physiological and molecular responses of the algae to AZ treatment, including photosynthetic efficiency, lipid peroxidation level, antioxidant enzyme activities, as well as transcriptome-based analysis of gene expression, were examined to investigate the potential toxic mechanism. Results shows that the photosynthetic pigment (per cell) increased slightly after AZ treatments, indicating that the photosystem of C. pyrenoidosa may have been strengthened. Glutathione and ascorbate contents were increased, and antioxidant enzyme activities were induced to relieve oxidative damage (e.g., from lipid peroxidation) in algae after AZ treatment. Transcriptome-based analysis of gene expression combined with physiological verification suggested that the 5 mg L−1 AZ treatment did not inhibit ATP generation in C. pyrenoidosa, but did significantly alter amino acid metabolism, especially in aspartate- and glutamine-related reactions. Moreover, perturbation of ascorbate synthesis, fat acid metabolism, and RNA translation was also observed, suggesting that AZ inhibits algal cell growth through multiple pathways. The identification of AZ-responsive genes in the eukaryotic alga C. pyrenoidosa provides new insight into AZ stress responses in a non-target organism.

Journal

Environmental PollutionElsevier

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off