Evaluation of photovoltaic-green and other roofing systems by means of ReCiPe and multiple life cycle–based environmental indicators

Evaluation of photovoltaic-green and other roofing systems by means of ReCiPe and multiple life... The present study evaluates the environmental profile of a PV-green roof (PV panels over a soil/plant layer) and other roofing systems (PV-bitumen, PV-gravel, gravel, extensive green and intensive green). The analysis is based on multiple life-cycle impact assessment methodologies (ReCiPe, etc), several scenarios (for example with and without recycling) and it provides a deeper analysis as well as additional results to authors' previous investigation about PV-green roofs. The evaluation of the PV-green system (in terms of material manufacturing phase) shows that PV laminates (multi-Si) and steel components (joist, decking, balance of system) are responsible for the greatest part of the total footprint, based on GWP (global warming potential) and ReCiPe. Among the roofs which do not produce electricity, material manufacturing phase reveals that intensive green configuration has considerably higher impact in comparison with gravel and extensive green systems. Concerning PV roofs, PV-green configuration on a long-term basis (by considering material manufacturing, use phase, transportation and disposal), after a critical point, pays back its additional environmental impact (related with the “green layer”) and it becomes more eco-friendly than the other two PV roofs. Certainly, this is due to the benefits (cooling effect of evapotranspiration, etc) of the soil/plant layer which result in PV output increase. The above mentioned critical point is determined by means of ReCiPe payback time and greenhouse-gas payback time. Several environmental indicators are calculated and presented along with results from the literature. A critical discussion is also provided. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Building and Environment Elsevier

Evaluation of photovoltaic-green and other roofing systems by means of ReCiPe and multiple life cycle–based environmental indicators

Loading next page...
 
/lp/elsevier/evaluation-of-photovoltaic-green-and-other-roofing-systems-by-means-of-Vh10BFBm1i
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier Ltd
ISSN
0360-1323
D.O.I.
10.1016/j.buildenv.2015.06.031
Publisher site
See Article on Publisher Site

Abstract

The present study evaluates the environmental profile of a PV-green roof (PV panels over a soil/plant layer) and other roofing systems (PV-bitumen, PV-gravel, gravel, extensive green and intensive green). The analysis is based on multiple life-cycle impact assessment methodologies (ReCiPe, etc), several scenarios (for example with and without recycling) and it provides a deeper analysis as well as additional results to authors' previous investigation about PV-green roofs. The evaluation of the PV-green system (in terms of material manufacturing phase) shows that PV laminates (multi-Si) and steel components (joist, decking, balance of system) are responsible for the greatest part of the total footprint, based on GWP (global warming potential) and ReCiPe. Among the roofs which do not produce electricity, material manufacturing phase reveals that intensive green configuration has considerably higher impact in comparison with gravel and extensive green systems. Concerning PV roofs, PV-green configuration on a long-term basis (by considering material manufacturing, use phase, transportation and disposal), after a critical point, pays back its additional environmental impact (related with the “green layer”) and it becomes more eco-friendly than the other two PV roofs. Certainly, this is due to the benefits (cooling effect of evapotranspiration, etc) of the soil/plant layer which result in PV output increase. The above mentioned critical point is determined by means of ReCiPe payback time and greenhouse-gas payback time. Several environmental indicators are calculated and presented along with results from the literature. A critical discussion is also provided.

Journal

Building and EnvironmentElsevier

Published: Nov 1, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off