“Whoa! It’s like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Try 2 weeks free now

Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology

Current satellite sensors provide data of insufficient spatial and temporal resolutions to fully characterize the patchy phenology patterns of dryland forests. The spatial and temporal adaptive reflectance fusion model (STARFM) is an algorithm that fuses Landsat 30 m data with MODIS 500 m data to produce synthetic imagery at Landsat spatial resolution and MODIS time steps. In this study, we evaluated the feasibility of using STARFM to produce synthetic imagery over a dryland vegetation study site for the purpose of tracking phenological changes. We assembled subsets of six Landsat-5 TM scenes and temporally-coincident MODIS datasets spanning the 2006 April–October growing season in central-northern Arizona, which is characterized by large tracts of dryland forest. To investigate the effects of temporal compositing, BRDF-adjustment, and base pair timing on the accuracy of the resulting synthetic imagery, we employed a range of MODIS 500 m surface reflectance datasets (daily, 8-day composite, and 16-day Nadir BRDF-Adjusted Reflectance (NBAR)) as well as initial Landsat/MODIS imagery pairs from opposite ends of the growing season. The STARFM algorithm was applied to each MODIS data series to produce up to twelve synthetic images corresponding to each Landsat image. We evaluated the accuracy of the synthetic images by comparing the reflectance values of a random sample of the vegetation pixels with the corresponding pixel values of the reference Landsat image on a band-by-band basis. Our results indicate that the NBAR imagery is the optimal dataset for use with Landsat-5 TM data in this area. The NBAR dataset consistently returned the lowest absolute difference values and the highest correlations. A comparison of landscape-scale maps of the timing and value of the peak NDVI derived from STARFM, Landsat, and MODIS (NBAR) time series across the full 2006 growing season shows the effect of the heightened spatial and temporal resolution offered by a STARFM-based dataset. This work demonstrates the feasibility of using the STARFM algorithm to assemble an imagery time series at Landsat spatial resolution and MODIS temporal resolution in vegetated dryland ecosystems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Remote Sensing of Environment Elsevier
Loading next page...

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy unlimited access and
personalized recommendations from
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $40/month

Try 2 weeks free now

Explore the DeepDyve Library

How DeepDyve Works

Spend time researching, not time worrying you’re buying articles that might not be useful.

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.

All the latest content is available, no embargo periods.

See the journals in your area

Simple and Affordable Pricing

14-day free trial. Cancel anytime, with a 30-day money-back guarantee.

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Best Deal — 25% off

Annual Plan

  • All the features of the Professional Plan, but for 25% off!
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

billed annually