Evaluation of kenaf fibers as moving bed biofilm carriers in algal membrane photobioreactor

Evaluation of kenaf fibers as moving bed biofilm carriers in algal membrane photobioreactor In this lab-scale study, the feasibility of using kenaf fibers as moving bed biofilm carriers in hybrid microalgal membrane photobioreactors (HMPBR) in organic matter and atrazine elimination from real secondary effluent was evaluated. For evaluating the kinetics of biofilm substrate consumption, an experimental model was proposed. Inoculation of wastewater samples with free carriers resulted in the greater removal of target pollutants. Removal efficiency of atrazine and chemical oxygen demand (COD) increased to 27% and 16%, with respect to the control, respectively. The total biomass accumulation in HMPBR exceeded 5g/L, and the microalgae tended to aggregate and attached to biofilm carriers. The removal efficiency of HMPBR improved significantly via inoculation of kenaf fiber carriers with bioremediation microalgal strains (p < 0.01). A lower stabilization ratio (VSS/TSS) was also recorded. The biomass in HMPBR included more lipids and carbohydrates. The results revealed that kenaf fibers could improve and upgrade the biological activity of different wastewater treatment applications, considering the great potential of biofilm carriers and their effluent quality. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecotoxicology and Environmental Safety Elsevier

Loading next page...
 
/lp/elsevier/evaluation-of-kenaf-fibers-as-moving-bed-biofilm-carriers-in-algal-MAFE01keYC
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
0147-6513
eISSN
1090-2414
D.O.I.
10.1016/j.ecoenv.2018.01.024
Publisher site
See Article on Publisher Site

Abstract

In this lab-scale study, the feasibility of using kenaf fibers as moving bed biofilm carriers in hybrid microalgal membrane photobioreactors (HMPBR) in organic matter and atrazine elimination from real secondary effluent was evaluated. For evaluating the kinetics of biofilm substrate consumption, an experimental model was proposed. Inoculation of wastewater samples with free carriers resulted in the greater removal of target pollutants. Removal efficiency of atrazine and chemical oxygen demand (COD) increased to 27% and 16%, with respect to the control, respectively. The total biomass accumulation in HMPBR exceeded 5g/L, and the microalgae tended to aggregate and attached to biofilm carriers. The removal efficiency of HMPBR improved significantly via inoculation of kenaf fiber carriers with bioremediation microalgal strains (p < 0.01). A lower stabilization ratio (VSS/TSS) was also recorded. The biomass in HMPBR included more lipids and carbohydrates. The results revealed that kenaf fibers could improve and upgrade the biological activity of different wastewater treatment applications, considering the great potential of biofilm carriers and their effluent quality.

Journal

Ecotoxicology and Environmental SafetyElsevier

Published: May 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off