Evaluation of acute and chronic ecotoxicity of cyclophosphamide, ifosfamide, their metabolites/transformation products and UV treated samples

Evaluation of acute and chronic ecotoxicity of cyclophosphamide, ifosfamide, their... Cyclophosphamide (CP) and Ifosfamide (IF) are two nitrogen mustard drugs widely prescribed in cancer therapy. They are continuously released via excreta into hospital and urban wastewaters reaching wastewater treatment plants. Although CP and IF, their metabolites and transformation products (TPs) residues have been found in the aquatic environment from few ng L−1 to tens of μg L−1, their environmental toxic effects are still not well known. The present study aimed to investigate the acute and chronic ecotoxicity of CP and IF and their commercially available human metabolites/TPs, i.e. carboxy-CP, Keto-CP and N-dechloroethyl-CP on different organisms of the aquatic trophic chain. The experiments were performed using the green alga Pseudokirchneriella subcapitata, the rotifer Brachionus calyciflorus and the crustaceans Thamnocephalus platyurus and Ceriodaphnia dubia. Moreover, to assess the treatment conditions in regards to parent compound removal and formation of new TPs, CP and IF were UV- irradiated for 6 h, 12 h, 24 h, 36 h and 48 h, followed by toxicity evaluation of treated samples by algae, rotifers and crustaceans. Between the parent compounds, IF resulted as more toxic drug under tested conditions, exerting both acute and chronic effects especially on C. dubia (LC50:196.4 mg L−1, EC50:15.84 mg L−1). Among the tested metabolites/TPs, only carboxy-CP inhibited the reproduction in the rotifer. However, LOEC and NOEC values were calculated for CP and IF for all organisms. In addition, despite a low degradation of CP (28%) and IF (36%) after 48 h UV-irradiation, statistically significant effect differences (p < 0.05) from not-irradiated and irradiated samples were observed in both acute and chronic assays, starting from 6 h UV-irradiation. Our results suggest that the toxic effects found in the aquatic organisms may be attributable to interactions between the parent compounds and their metabolites/TPs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Transportation Research Part C: Emerging Technologies Elsevier

Evaluation of acute and chronic ecotoxicity of cyclophosphamide, ifosfamide, their metabolites/transformation products and UV treated samples

Loading next page...
 
/lp/elsevier/evaluation-of-acute-and-chronic-ecotoxicity-of-cyclophosphamide-nNP1FKzrAg
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0968-090X
D.O.I.
10.1016/j.envpol.2017.10.066
Publisher site
See Article on Publisher Site

Abstract

Cyclophosphamide (CP) and Ifosfamide (IF) are two nitrogen mustard drugs widely prescribed in cancer therapy. They are continuously released via excreta into hospital and urban wastewaters reaching wastewater treatment plants. Although CP and IF, their metabolites and transformation products (TPs) residues have been found in the aquatic environment from few ng L−1 to tens of μg L−1, their environmental toxic effects are still not well known. The present study aimed to investigate the acute and chronic ecotoxicity of CP and IF and their commercially available human metabolites/TPs, i.e. carboxy-CP, Keto-CP and N-dechloroethyl-CP on different organisms of the aquatic trophic chain. The experiments were performed using the green alga Pseudokirchneriella subcapitata, the rotifer Brachionus calyciflorus and the crustaceans Thamnocephalus platyurus and Ceriodaphnia dubia. Moreover, to assess the treatment conditions in regards to parent compound removal and formation of new TPs, CP and IF were UV- irradiated for 6 h, 12 h, 24 h, 36 h and 48 h, followed by toxicity evaluation of treated samples by algae, rotifers and crustaceans. Between the parent compounds, IF resulted as more toxic drug under tested conditions, exerting both acute and chronic effects especially on C. dubia (LC50:196.4 mg L−1, EC50:15.84 mg L−1). Among the tested metabolites/TPs, only carboxy-CP inhibited the reproduction in the rotifer. However, LOEC and NOEC values were calculated for CP and IF for all organisms. In addition, despite a low degradation of CP (28%) and IF (36%) after 48 h UV-irradiation, statistically significant effect differences (p < 0.05) from not-irradiated and irradiated samples were observed in both acute and chronic assays, starting from 6 h UV-irradiation. Our results suggest that the toxic effects found in the aquatic organisms may be attributable to interactions between the parent compounds and their metabolites/TPs.

Journal

Transportation Research Part C: Emerging TechnologiesElsevier

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off