Evaluating the utility of solar-induced chlorophyll fluorescence for drought monitoring by comparison with NDVI derived from wheat canopy

Evaluating the utility of solar-induced chlorophyll fluorescence for drought monitoring by... Normalized Difference Vegetation Index (NDVI) has been extensively used in continuous and long-term drought monitoring over large-scale, but with late response to drought-related changes of photosynthesis. Instead, solar-induced chlorophyll fluorescence (SIF) is more closely related to photosynthesis and thus is proposed to track the impacts of drought on vegetation growth. However, the detailed difference between SIF and NDVI in responding to drought has not been thoroughly explored. Here we present continuous ground measurements of NDVI and SIF at 760nm over four plots of wheat with different intensities of drought (well-watered treatment, moderate drought, severe drought and extreme drought). The average values of seasonal SIF were significantly lower under severe drought and extreme drought, while NDVI means only showed significant reduction in extreme drought. In the seasonal patterns, daily SIF could clearly separate the difference of drought gradient, while the difference of daily NDVI was clearer in the end of the field campaign. Daily SIF also significantly and positively correlated with soil moisture, indicating that SIF could be considered as an estimator of soil moisture to detect the information about agricultural drought. Furthermore, in extreme drought plot, the correlation of SIF and soil moisture was higher than that of NDVI and soil moisture in a shorter time lag (<15-day) but weaker in a longer time lag (longer than 30-day). The relationships of growth parameters with SIF and NDVI were further analyzed, showing a saturation of NDVI and unsaturation of SIF at high values of leaf area index and relative water content. These results suggested that SIF is better fit in early drought monitoring, especially over closure canopy, while NDVI is more feasible when drought lasted over a long time scale. Our findings in the study might provide deep insight into the utility of SIF in drought monitoring. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science of the Total Environment Elsevier

Evaluating the utility of solar-induced chlorophyll fluorescence for drought monitoring by comparison with NDVI derived from wheat canopy

Loading next page...
 
/lp/elsevier/evaluating-the-utility-of-solar-induced-chlorophyll-fluorescence-for-7ITJ1atBmZ
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier B.V.
ISSN
0048-9697
eISSN
1879-1026
D.O.I.
10.1016/j.scitotenv.2017.12.268
Publisher site
See Article on Publisher Site

Abstract

Normalized Difference Vegetation Index (NDVI) has been extensively used in continuous and long-term drought monitoring over large-scale, but with late response to drought-related changes of photosynthesis. Instead, solar-induced chlorophyll fluorescence (SIF) is more closely related to photosynthesis and thus is proposed to track the impacts of drought on vegetation growth. However, the detailed difference between SIF and NDVI in responding to drought has not been thoroughly explored. Here we present continuous ground measurements of NDVI and SIF at 760nm over four plots of wheat with different intensities of drought (well-watered treatment, moderate drought, severe drought and extreme drought). The average values of seasonal SIF were significantly lower under severe drought and extreme drought, while NDVI means only showed significant reduction in extreme drought. In the seasonal patterns, daily SIF could clearly separate the difference of drought gradient, while the difference of daily NDVI was clearer in the end of the field campaign. Daily SIF also significantly and positively correlated with soil moisture, indicating that SIF could be considered as an estimator of soil moisture to detect the information about agricultural drought. Furthermore, in extreme drought plot, the correlation of SIF and soil moisture was higher than that of NDVI and soil moisture in a shorter time lag (<15-day) but weaker in a longer time lag (longer than 30-day). The relationships of growth parameters with SIF and NDVI were further analyzed, showing a saturation of NDVI and unsaturation of SIF at high values of leaf area index and relative water content. These results suggested that SIF is better fit in early drought monitoring, especially over closure canopy, while NDVI is more feasible when drought lasted over a long time scale. Our findings in the study might provide deep insight into the utility of SIF in drought monitoring.

Journal

Science of the Total EnvironmentElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off