Evaluating resource selection functions

Evaluating resource selection functions A resource selection function (RSF) is any model that yields values proportional to the probability of use of a resource unit. RSF models often are fitted using generalized linear models (GLMs) although a variety of statistical models might be used. Information criteria such as the Akaike Information Criteria (AIC) or Bayesian Information Criteria (BIC) are tools that can be useful for selecting a model from a set of biologically plausible candidates. Statistical inference procedures, such as the likelihood-ratio test, can be used to assess whether models deviate from random null models. But for most applications of RSF models, usefulness is evaluated by how well the model predicts the location of organisms on a landscape. Predictions from RSF models constructed using presence/absence (used/unused) data can be evaluated using procedures developed for logistic regression, such as confusion matrices, Kappa statistics, and Receiver Operating Characteristic (ROC) curves. However, RSF models estimated from presence/available data create unique problems for evaluating model predictions. For presence/available models we propose a form of k -fold cross validation for evaluating prediction success. This involves calculating the correlation between RSF ranks and area-adjusted frequencies for a withheld sub-sample of data. A similar approach can be applied to evaluate predictive success for out-of-sample data. Not all RSF models are robust for application in different times or different places due to ecological and behavioral variation of the target organisms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecological Modelling Elsevier

Loading next page...
 
/lp/elsevier/evaluating-resource-selection-functions-Obo0H1GIyb
Publisher
Elsevier
Copyright
Copyright © 2002 Elsevier Science B.V.
ISSN
0304-3800
eISSN
1872-7026
D.O.I.
10.1016/S0304-3800(02)00200-4
Publisher site
See Article on Publisher Site

Abstract

A resource selection function (RSF) is any model that yields values proportional to the probability of use of a resource unit. RSF models often are fitted using generalized linear models (GLMs) although a variety of statistical models might be used. Information criteria such as the Akaike Information Criteria (AIC) or Bayesian Information Criteria (BIC) are tools that can be useful for selecting a model from a set of biologically plausible candidates. Statistical inference procedures, such as the likelihood-ratio test, can be used to assess whether models deviate from random null models. But for most applications of RSF models, usefulness is evaluated by how well the model predicts the location of organisms on a landscape. Predictions from RSF models constructed using presence/absence (used/unused) data can be evaluated using procedures developed for logistic regression, such as confusion matrices, Kappa statistics, and Receiver Operating Characteristic (ROC) curves. However, RSF models estimated from presence/available data create unique problems for evaluating model predictions. For presence/available models we propose a form of k -fold cross validation for evaluating prediction success. This involves calculating the correlation between RSF ranks and area-adjusted frequencies for a withheld sub-sample of data. A similar approach can be applied to evaluate predictive success for out-of-sample data. Not all RSF models are robust for application in different times or different places due to ecological and behavioral variation of the target organisms.

Journal

Ecological ModellingElsevier

Published: Nov 30, 2002

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off