Estimated individual inhaled dose of fine particles and indicators of lung function: A pilot study among Chinese young adults

Estimated individual inhaled dose of fine particles and indicators of lung function: A pilot... Fine particle (PM2.5)-related lung damage has been reported in most studies regarding environmental or personal PM2.5 concentrations. To assess effects of personal PM2.5 exposures on lung function, we recruited 20 postgraduate students and estimated the individual doses of inhaled PM2.5 based on their microenvironmetal PM2.5 concentrations, time-activity patterns and refereed inhalation rates. During the period of seven consecutive days in each of the four seasons, we repeatedly measured the daily lung function parameters and airway inflammation makers such as fractional exhaled nitric oxide (FeNO) as well as systemic inflammation markers including interleukin-1β on the final day. The high individual dose (median (IQR)) of inhaled PM2.5 was 957 (948) μg/day. We observed a maximum FeNO increase (9.1% (95%CI: 2.2–15.5)) at lag 0 day, a maximum decrease of maximum voluntary ventilation (11.8% (95% CI: 4.6–19.0)) at lag 5 day and a maximum interleukin-1β increase (103% (95% CI: 47–159)) at lag 2 day for an interquartile range increase in the individual dose of inhaled PM2.5 during the four seasons. Short-term exposure to PM2.5 assessed by the individual dose of inhaled PM2.5 was associated with higher airway and systemic inflammation and reduced lung function. Further studies are needed to understand better underlying mechanisms of lung damage following acute exposure to PM2.5. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Pollution Elsevier

Estimated individual inhaled dose of fine particles and indicators of lung function: A pilot study among Chinese young adults

Loading next page...
 
/lp/elsevier/estimated-individual-inhaled-dose-of-fine-particles-and-indicators-of-VsRpUBgZzk
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0269-7491
D.O.I.
10.1016/j.envpol.2017.12.074
Publisher site
See Article on Publisher Site

Abstract

Fine particle (PM2.5)-related lung damage has been reported in most studies regarding environmental or personal PM2.5 concentrations. To assess effects of personal PM2.5 exposures on lung function, we recruited 20 postgraduate students and estimated the individual doses of inhaled PM2.5 based on their microenvironmetal PM2.5 concentrations, time-activity patterns and refereed inhalation rates. During the period of seven consecutive days in each of the four seasons, we repeatedly measured the daily lung function parameters and airway inflammation makers such as fractional exhaled nitric oxide (FeNO) as well as systemic inflammation markers including interleukin-1β on the final day. The high individual dose (median (IQR)) of inhaled PM2.5 was 957 (948) μg/day. We observed a maximum FeNO increase (9.1% (95%CI: 2.2–15.5)) at lag 0 day, a maximum decrease of maximum voluntary ventilation (11.8% (95% CI: 4.6–19.0)) at lag 5 day and a maximum interleukin-1β increase (103% (95% CI: 47–159)) at lag 2 day for an interquartile range increase in the individual dose of inhaled PM2.5 during the four seasons. Short-term exposure to PM2.5 assessed by the individual dose of inhaled PM2.5 was associated with higher airway and systemic inflammation and reduced lung function. Further studies are needed to understand better underlying mechanisms of lung damage following acute exposure to PM2.5.

Journal

Environmental PollutionElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off