Error in a USGS 30-meter digital elevation model and its impact on terrain modeling

Error in a USGS 30-meter digital elevation model and its impact on terrain modeling Calculations based on US Geological Survey (USGS) digital elevation models (DEMs) inherit any errors associated with that particular representation of topography. We investigated the potential impact of error in a USGS 30 m DEM on terrain analysis over 27 km 2 . The difference in elevation between 2652 differential Global Positioning Systems measurements and USGS 30-m DEM derived elevations provided the comparative error dataset. Analysis of this comparative error data suggested that although the global (average) error is small, local error values can be large, and also spatially correlated. Stochastic conditional simulation was used to generate multiple realizations of the DEM error surface that reproduce the error measurements at their original locations and sample statistics such as the histogram and semivariogram model. The differences between these alternative error surfaces provide a model of uncertainty for the unknown DEM error spatial distribution. These DEM errors had a significant impact on terrain attributes which compound elevation values of many grid cells (e.g. slope, wetness index, etc.). A case study using terrain modeling demonstrates that the result of error propagation is most dramatic in valley bottoms and along streamlines. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrology Elsevier

Error in a USGS 30-meter digital elevation model and its impact on terrain modeling

Journal of Hydrology, Volume 233 (1) – Jun 12, 2000

Loading next page...
 
/lp/elsevier/error-in-a-usgs-30-meter-digital-elevation-model-and-its-impact-on-i02rJG0LTf
Publisher
Elsevier
Copyright
Copyright © 2000 Elsevier Science B.V.
ISSN
0022-1694
eISSN
1879-2707
D.O.I.
10.1016/S0022-1694(00)00229-8
Publisher site
See Article on Publisher Site

Abstract

Calculations based on US Geological Survey (USGS) digital elevation models (DEMs) inherit any errors associated with that particular representation of topography. We investigated the potential impact of error in a USGS 30 m DEM on terrain analysis over 27 km 2 . The difference in elevation between 2652 differential Global Positioning Systems measurements and USGS 30-m DEM derived elevations provided the comparative error dataset. Analysis of this comparative error data suggested that although the global (average) error is small, local error values can be large, and also spatially correlated. Stochastic conditional simulation was used to generate multiple realizations of the DEM error surface that reproduce the error measurements at their original locations and sample statistics such as the histogram and semivariogram model. The differences between these alternative error surfaces provide a model of uncertainty for the unknown DEM error spatial distribution. These DEM errors had a significant impact on terrain attributes which compound elevation values of many grid cells (e.g. slope, wetness index, etc.). A case study using terrain modeling demonstrates that the result of error propagation is most dramatic in valley bottoms and along streamlines.

Journal

Journal of HydrologyElsevier

Published: Jun 12, 2000

References

  • Landslide Recognition: Identification, Movement and Causes
  • An automated approach to the classification of the slope units using digital data
    Giles, P.T; Franklin, S.E
  • Generating surfaces of daily meteorological variables over large regions of complex terrain
    Thornton, P.E; Running, S.W; White, M.A

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off