ER-PM Contacts Restrict Exocytic Sites for Polarized Morphogenesis

ER-PM Contacts Restrict Exocytic Sites for Polarized Morphogenesis Spatial control of exocytosis underlies polarized cell morphogenesis. In rod-shaped fission yeast, exocytic vesicles are conveyed along the actin cytoskeleton by myosin V motors toward growing cell ends [1, 2], the major sites for exocytosis. However, actomyosin-based vesicle delivery is dispensable for polarized secretion and cylindrical cell shape of fission yeast [3]. Thus, additional mechanisms should function in the spatial confinement of exocytosis. Here we report a novel role of endoplasmic reticulum (ER)-plasma membrane (PM) contacts in restricting exocytic sites for polarized fission yeast morphogenesis. We show that fission yeast cells deficient in both ER-PM contacts and actomyosin-based secretory vesicle transport display aberrant globular cell shape due to delocalized exocytosis. By artificially manipulating the strength and extent of ER-PM contacts in wild-type and mutant cells that exhibit induced ectopic exocytosis, we demonstrate that exocytosis and ER-PM contact formation are spatially incompatible. Furthermore, extensive ER-PM junctions at the non-growing lateral cell cortex prevent the PM from exocytic vesicle tethering and hence attenuate growth potential at cell sides. We thus propose that ER-PM contacts function as a new morphogenetic module by limiting exocytosis to growing cell tips in fission yeast. A similar mechanism could apply to other cell types with prominent ER-PM contacts. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Current Biology Elsevier

ER-PM Contacts Restrict Exocytic Sites for Polarized Morphogenesis

Loading next page...
 
/lp/elsevier/er-pm-contacts-restrict-exocytic-sites-for-polarized-morphogenesis-ArllKdNi22
Publisher
Cell Press
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0960-9822
D.O.I.
10.1016/j.cub.2017.11.055
Publisher site
See Article on Publisher Site

Abstract

Spatial control of exocytosis underlies polarized cell morphogenesis. In rod-shaped fission yeast, exocytic vesicles are conveyed along the actin cytoskeleton by myosin V motors toward growing cell ends [1, 2], the major sites for exocytosis. However, actomyosin-based vesicle delivery is dispensable for polarized secretion and cylindrical cell shape of fission yeast [3]. Thus, additional mechanisms should function in the spatial confinement of exocytosis. Here we report a novel role of endoplasmic reticulum (ER)-plasma membrane (PM) contacts in restricting exocytic sites for polarized fission yeast morphogenesis. We show that fission yeast cells deficient in both ER-PM contacts and actomyosin-based secretory vesicle transport display aberrant globular cell shape due to delocalized exocytosis. By artificially manipulating the strength and extent of ER-PM contacts in wild-type and mutant cells that exhibit induced ectopic exocytosis, we demonstrate that exocytosis and ER-PM contact formation are spatially incompatible. Furthermore, extensive ER-PM junctions at the non-growing lateral cell cortex prevent the PM from exocytic vesicle tethering and hence attenuate growth potential at cell sides. We thus propose that ER-PM contacts function as a new morphogenetic module by limiting exocytosis to growing cell tips in fission yeast. A similar mechanism could apply to other cell types with prominent ER-PM contacts.

Journal

Current BiologyElsevier

Published: Jan 8, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off