Equifinality, sensitivity and predictive uncertainty in the estimation of critical loads

Equifinality, sensitivity and predictive uncertainty in the estimation of critical loads The impacts of acidifying atmospheric deposition to soil and water resources are commonly calculated utilising predictive mathematical models. The estimation of the predictive uncertainty inherent in these models is important since the model predictions are increasingly being used as a scientific basis for decisions on emission abatement policies and strategies in Europe. When predictive uncertainty is taken into account it may significantly affect conclusions ascertained from model predictions. The Generalised Likelihood Uncertainty Estimation (GLUE) approach is used here in the estimation of predictive uncertainty of PROFILE, a steady-state biogeochemical model. GLUE is based on Monte Carlo simulation and recognises the possible equifinality of parameter sets. With this methodology it is possible to make an assessment of the likelihood of a parameter set being an acceptable simulator of a system when model predictions are compared to measured field data. The GLUE methodology is applied to PROFILE simulations of five European research sites. The results have revealed that the model is unable to reproduce the characteristics of soil water chemistry consistently, and that the resulting predicted critical loads must be associated with significant uncertainty. The study also demonstrates that a wide range of parameter sets exist that give acceptable simulations of site characteristics as well as a broad range of critical load values that are consistent with the site data. A sensitivity analysis is performed for simulations of data sets from each site; this is employed to evaluate the role of the model parameters in forcing the predictions. Results of the sensitivity analyses show that, in general, site predicted soil chemistry is driven by atmospheric inputs and mineral weathering rates are determined by soil physical properties. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science of the Total Environment Elsevier

Equifinality, sensitivity and predictive uncertainty in the estimation of critical loads

Loading next page...
 
/lp/elsevier/equifinality-sensitivity-and-predictive-uncertainty-in-the-estimation-fMSkCUJW7c
Publisher
Elsevier
Copyright
Copyright © 1999 Elsevier Science B.V.
ISSN
0048-9697
eISSN
1879-1026
D.O.I.
10.1016/S0048-9697(99)00282-X
Publisher site
See Article on Publisher Site

Abstract

The impacts of acidifying atmospheric deposition to soil and water resources are commonly calculated utilising predictive mathematical models. The estimation of the predictive uncertainty inherent in these models is important since the model predictions are increasingly being used as a scientific basis for decisions on emission abatement policies and strategies in Europe. When predictive uncertainty is taken into account it may significantly affect conclusions ascertained from model predictions. The Generalised Likelihood Uncertainty Estimation (GLUE) approach is used here in the estimation of predictive uncertainty of PROFILE, a steady-state biogeochemical model. GLUE is based on Monte Carlo simulation and recognises the possible equifinality of parameter sets. With this methodology it is possible to make an assessment of the likelihood of a parameter set being an acceptable simulator of a system when model predictions are compared to measured field data. The GLUE methodology is applied to PROFILE simulations of five European research sites. The results have revealed that the model is unable to reproduce the characteristics of soil water chemistry consistently, and that the resulting predicted critical loads must be associated with significant uncertainty. The study also demonstrates that a wide range of parameter sets exist that give acceptable simulations of site characteristics as well as a broad range of critical load values that are consistent with the site data. A sensitivity analysis is performed for simulations of data sets from each site; this is employed to evaluate the role of the model parameters in forcing the predictions. Results of the sensitivity analyses show that, in general, site predicted soil chemistry is driven by atmospheric inputs and mineral weathering rates are determined by soil physical properties.

Journal

Science of the Total EnvironmentElsevier

Published: Sep 15, 1999

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off