Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology

Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex... It may be endemic to mechanistic modelling of complex environmental systems that there are many different model structures and many different parameter sets within a chosen model structure that may be behavioural or acceptable in reproducing the observed behaviour of that system. This has been called the equifinality concept. The generalised likelihood uncertainty estimation (GLUE) methodology for model identification allowing for equifinality is described. Prediction within this methodology is a process of ensemble forecasting using a sample of parameter sets from the behavioural model space, with each sample weighted according to its likelihood measure to estimate prediction quantiles. This allows that different models may contribute to the ensemble prediction interval at different time steps and that the distributional form of the predictions may change over time. Any effects of model nonlinearity, covariation of parameter values and errors in model structure, input data or observed variables, with which the simulations are compared, are handled implicitly within this procedure. GLUE involves a number of choices that must be made explicit and can be therefore subjected to scrutiny and discussion. These include ways of combining information from different types of model evaluation or from different periods in a data assimilation context. An example application to rainfall-runoff modelling is used to illustrate the methodology, including the updating of likelihood measures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrology Elsevier

Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology

Journal of Hydrology, Volume 249 (1) – Aug 1, 2001

Loading next page...
 
/lp/elsevier/equifinality-data-assimilation-and-uncertainty-estimation-in-zxRPIMiIiQ
Publisher
Elsevier
Copyright
Copyright © 2001 Elsevier Science B.V.
ISSN
0022-1694
eISSN
1879-2707
DOI
10.1016/S0022-1694(01)00421-8
Publisher site
See Article on Publisher Site

Abstract

It may be endemic to mechanistic modelling of complex environmental systems that there are many different model structures and many different parameter sets within a chosen model structure that may be behavioural or acceptable in reproducing the observed behaviour of that system. This has been called the equifinality concept. The generalised likelihood uncertainty estimation (GLUE) methodology for model identification allowing for equifinality is described. Prediction within this methodology is a process of ensemble forecasting using a sample of parameter sets from the behavioural model space, with each sample weighted according to its likelihood measure to estimate prediction quantiles. This allows that different models may contribute to the ensemble prediction interval at different time steps and that the distributional form of the predictions may change over time. Any effects of model nonlinearity, covariation of parameter values and errors in model structure, input data or observed variables, with which the simulations are compared, are handled implicitly within this procedure. GLUE involves a number of choices that must be made explicit and can be therefore subjected to scrutiny and discussion. These include ways of combining information from different types of model evaluation or from different periods in a data assimilation context. An example application to rainfall-runoff modelling is used to illustrate the methodology, including the updating of likelihood measures.

Journal

Journal of HydrologyElsevier

Published: Aug 1, 2001

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off