Environmental impacts of the Chennai oil spill accident – A case study

Environmental impacts of the Chennai oil spill accident – A case study Chennai, a coastal city in India with a population of over 7 million people, was impacted by a major oil spill on January 28th 2017. The spill occurred when two cargo ships collided about two miles away from the Chennai shoreline. The accident released about 75 metric tons of heavy fuel oil into the Bay of Bengal. This case study provides field observations and laboratory characterization data for this oil spill accident. Our field observations show that the seawalls and groins, which were installed along the Chennai shoreline to manage coastal erosion problems, played a significant role in controlling the oil deposition patterns. A large amount of oil was trapped within the relatively stagnant zone near the seawall-groin intersection region. The initial cleanup efforts used manual methods to skim the trapped oil and these efforts indeed helped recover large amount of oil. Our laboratory data show that the Chennai oil spill residues have unique fingerprints of hopanes and steranes which can be used to track the spill. Our weathering experiments show that volatilization processes should have played a significant role in degrading the oil during initial hours. The characterization data show that the source oil contained about 503,000 mg/kg of total petroleum hydrocarbons (TPH) and 17,586 mg/kg of total polycyclic aromatic hydrocarbons (PAHs). The field samples collected 6 and 62 days after the spill contained about 71,000 and 28,000 mg/kg of TPH and 4854 and 4016 mg/kg of total PAHs, respectively. The field samples had a relatively large percentage of heavy PAHs, and most of these PAHs are highly toxic compounds that are difficult to weather and their long-term effects on coastal ecosystems are largely unknown. Therefore, more detailed studies are needed to monitor and track the long term environmental impacts of the Chennai oil spill residues on the Bay of Bengal coastal ecosystem. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science of the Total Environment Elsevier

Environmental impacts of the Chennai oil spill accident – A case study

Loading next page...
 
/lp/elsevier/environmental-impacts-of-the-chennai-oil-spill-accident-a-case-study-bDa0SDWYXJ
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0048-9697
eISSN
1879-1026
D.O.I.
10.1016/j.scitotenv.2018.01.128
Publisher site
See Article on Publisher Site

Abstract

Chennai, a coastal city in India with a population of over 7 million people, was impacted by a major oil spill on January 28th 2017. The spill occurred when two cargo ships collided about two miles away from the Chennai shoreline. The accident released about 75 metric tons of heavy fuel oil into the Bay of Bengal. This case study provides field observations and laboratory characterization data for this oil spill accident. Our field observations show that the seawalls and groins, which were installed along the Chennai shoreline to manage coastal erosion problems, played a significant role in controlling the oil deposition patterns. A large amount of oil was trapped within the relatively stagnant zone near the seawall-groin intersection region. The initial cleanup efforts used manual methods to skim the trapped oil and these efforts indeed helped recover large amount of oil. Our laboratory data show that the Chennai oil spill residues have unique fingerprints of hopanes and steranes which can be used to track the spill. Our weathering experiments show that volatilization processes should have played a significant role in degrading the oil during initial hours. The characterization data show that the source oil contained about 503,000 mg/kg of total petroleum hydrocarbons (TPH) and 17,586 mg/kg of total polycyclic aromatic hydrocarbons (PAHs). The field samples collected 6 and 62 days after the spill contained about 71,000 and 28,000 mg/kg of TPH and 4854 and 4016 mg/kg of total PAHs, respectively. The field samples had a relatively large percentage of heavy PAHs, and most of these PAHs are highly toxic compounds that are difficult to weather and their long-term effects on coastal ecosystems are largely unknown. Therefore, more detailed studies are needed to monitor and track the long term environmental impacts of the Chennai oil spill residues on the Bay of Bengal coastal ecosystem.

Journal

Science of the Total EnvironmentElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off