Environmental exposure to metals and the risk of hypertension: A cross-sectional study in China

Environmental exposure to metals and the risk of hypertension: A cross-sectional study in China Metal pollution is a severe environmental issue in China, which has been recently linked with the risk of hypertension. However, relevant epidemiological studies are limited. The present exploratory study was conducted to assess the associations of environmental exposure to metals with the odds of hypertension as well as blood pressure (BP) levels using urine samples in a Chinese general population. From May 2016 to April 2017, a total of 823 eligible participants were consecutively enrolled in our study in Wuhan, China. Hypertension was defined as systolic BP (SBP) of ≥140 mmHg or diastolic BP (DBP) of ≥90 mmHg, a self-reported physician diagnosis, or current use of antihypertensive medication. We used urine samples as biomarkers to reflect the levels of environmental exposure to 20 metals. Multivariable regression models were applied to assess the potential association. Multi-metal models were conducted to investigate the impacts of co-exposure to various metals. Based on the results from various models, positive trends for increased odds of hypertension with increasing quartiles of vanadium (V), iron (Fe), zinc (Zn) and selenium (Se) were suggested. Compared with those in the lowest quartiles, participants in the highest quartiles of V, Fe, Zn and Se had a 4.4-fold, 4.9-fold, 4.2-fold and 2.5-fold increased odds of having hypertension, respectively. High urinary Hg level was found to increase the levels of DBP. Individuals in the highest group of Hg were found to have a 4.3 mmHg higher level of DBP. Our findings suggest that environmental exposure to V, Fe, Zn, Se and Hg might increase the risk of hypertension or elevate the levels of BP. These findings warrant further prospective studies in a larger population. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Transportation Research Part C: Emerging Technologies Elsevier

Environmental exposure to metals and the risk of hypertension: A cross-sectional study in China

Loading next page...
 
/lp/elsevier/environmental-exposure-to-metals-and-the-risk-of-hypertension-a-cross-H3srG2tQbt
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0968-090X
D.O.I.
10.1016/j.envpol.2017.10.111
Publisher site
See Article on Publisher Site

Abstract

Metal pollution is a severe environmental issue in China, which has been recently linked with the risk of hypertension. However, relevant epidemiological studies are limited. The present exploratory study was conducted to assess the associations of environmental exposure to metals with the odds of hypertension as well as blood pressure (BP) levels using urine samples in a Chinese general population. From May 2016 to April 2017, a total of 823 eligible participants were consecutively enrolled in our study in Wuhan, China. Hypertension was defined as systolic BP (SBP) of ≥140 mmHg or diastolic BP (DBP) of ≥90 mmHg, a self-reported physician diagnosis, or current use of antihypertensive medication. We used urine samples as biomarkers to reflect the levels of environmental exposure to 20 metals. Multivariable regression models were applied to assess the potential association. Multi-metal models were conducted to investigate the impacts of co-exposure to various metals. Based on the results from various models, positive trends for increased odds of hypertension with increasing quartiles of vanadium (V), iron (Fe), zinc (Zn) and selenium (Se) were suggested. Compared with those in the lowest quartiles, participants in the highest quartiles of V, Fe, Zn and Se had a 4.4-fold, 4.9-fold, 4.2-fold and 2.5-fold increased odds of having hypertension, respectively. High urinary Hg level was found to increase the levels of DBP. Individuals in the highest group of Hg were found to have a 4.3 mmHg higher level of DBP. Our findings suggest that environmental exposure to V, Fe, Zn, Se and Hg might increase the risk of hypertension or elevate the levels of BP. These findings warrant further prospective studies in a larger population.

Journal

Transportation Research Part C: Emerging TechnologiesElsevier

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off