Entrained flow gasification Part 1: Gasification of glycol in an atmospheric-pressure experimental rig

Entrained flow gasification Part 1: Gasification of glycol in an atmospheric-pressure... Three coordinated papers are presented concerning entrained flow gasification of a liquid fuel under atmospheric conditions. The work is based on a detailed mapping of process parameters inside the entrained flow gasifier and at the gasifier outlet. In this paper the experimental setup and the experimental data are reported. Mono ethylene glycol (MEG) is used as a well-defined surrogate fuel for biogenic oils. The overall performance of the reactor is evaluated by measuring the gas-phase composition at the reactor outlet; radial profiles of gas-phase composition (CO2, CO, H2, CH4, hydrocarbons) and temperature at 300 and 680 mm distances from the burner are measured to describe the mixing and reaction pattern in the gasifier. Global and local species balances are used to derive data that are not accessible by measurement. Characteristic parameters, i.e. stoichiometry, carbon conversion and water gas shift temperature, are derived to assess consistency of the measured data. Droplet size distribution and droplet velocity at the burner nozzle are reported based on atomization test rig experiments and direct measurements in the burner near field under gasification conditions. The experiments show a free jet with a strong outer recirculation zone as core gasification pattern. The measured species concentrations and temperatures provide an insight into both the mixing and the reactions in the burner near field. The water gas shift equilibrium is reached for a temperature of 1495 K upstream of the gasifier outlet. Hydrocarbons are not completely converted due to the low temperatures near the gasifier outlet.The research work has been conducted within the research cooperation of the Helmholtz Virtual Institute HVIGasTech. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Fuel Elsevier

Entrained flow gasification Part 1: Gasification of glycol in an atmospheric-pressure experimental rig

Loading next page...
 
/lp/elsevier/entrained-flow-gasification-part-1-gasification-of-glycol-in-an-j3P4ATe8Yq
Publisher
Elsevier
Copyright
Copyright © 2017 The Authors
ISSN
0016-2361
D.O.I.
10.1016/j.fuel.2017.12.077
Publisher site
See Article on Publisher Site

Abstract

Three coordinated papers are presented concerning entrained flow gasification of a liquid fuel under atmospheric conditions. The work is based on a detailed mapping of process parameters inside the entrained flow gasifier and at the gasifier outlet. In this paper the experimental setup and the experimental data are reported. Mono ethylene glycol (MEG) is used as a well-defined surrogate fuel for biogenic oils. The overall performance of the reactor is evaluated by measuring the gas-phase composition at the reactor outlet; radial profiles of gas-phase composition (CO2, CO, H2, CH4, hydrocarbons) and temperature at 300 and 680 mm distances from the burner are measured to describe the mixing and reaction pattern in the gasifier. Global and local species balances are used to derive data that are not accessible by measurement. Characteristic parameters, i.e. stoichiometry, carbon conversion and water gas shift temperature, are derived to assess consistency of the measured data. Droplet size distribution and droplet velocity at the burner nozzle are reported based on atomization test rig experiments and direct measurements in the burner near field under gasification conditions. The experiments show a free jet with a strong outer recirculation zone as core gasification pattern. The measured species concentrations and temperatures provide an insight into both the mixing and the reactions in the burner near field. The water gas shift equilibrium is reached for a temperature of 1495 K upstream of the gasifier outlet. Hydrocarbons are not completely converted due to the low temperatures near the gasifier outlet.The research work has been conducted within the research cooperation of the Helmholtz Virtual Institute HVIGasTech.

Journal

FuelElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off