Enhancing the WorldClim data set for national and regional applications

Enhancing the WorldClim data set for national and regional applications Climatic change in the last few decades has had a widespread impact on both natural and human systems, observable on all continents. Ecological and environmental models using climatic data often rely on gridded data, such as WorldClim. The main aim of this study was to devise and evaluate a computationally efficient approach to produce new high resolution (100m) estimates of current and future climatic variables to be used at the national and regional scale. The test area was Great Britain, where local data are available and of good quality. Present and future climate surfaces were produced. For the present, the approach involved the integration, via spatial interpolation, of local climate information and WorldClim to reduce bias. For future climate scenarios the approach involved spatially downscaling of WorldClim (1km) to a finer resolution of 100m.The main advantages of the proposed approach are: 1. finer resolution, 2. locally adapted to the study area with use of higher number of meteorological stations and improved accuracy and bias, and 3. computationally efficient while making use of the existing resources provided by WorldClim.Two applications were presented to illustrate the practical consequences of improvements obtained with this method. The first is a measure of rainfall intensity, i.e. the R-factor, widely applied in erosion and catchment-scale studies. The second is an application to species distribution modelling, involving a range of bioclimatic variables. The results highlighted the importance of considering the spatial variability and structure of the data integrated in the modelling, and using data adapted to the geographical extent of the analysis, whenever possible.The results of the applications showed the advantage of using enhanced climatic data in applications such as the estimation of soil erosion, species range shift, carbon stocks and the provision of ecosystem services. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science of the Total Environment Elsevier

Enhancing the WorldClim data set for national and regional applications

Loading next page...
 
/lp/elsevier/enhancing-the-worldclim-data-set-for-national-and-regional-Bi3jLCvfRQ
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0048-9697
eISSN
1879-1026
D.O.I.
10.1016/j.scitotenv.2017.12.258
Publisher site
See Article on Publisher Site

Abstract

Climatic change in the last few decades has had a widespread impact on both natural and human systems, observable on all continents. Ecological and environmental models using climatic data often rely on gridded data, such as WorldClim. The main aim of this study was to devise and evaluate a computationally efficient approach to produce new high resolution (100m) estimates of current and future climatic variables to be used at the national and regional scale. The test area was Great Britain, where local data are available and of good quality. Present and future climate surfaces were produced. For the present, the approach involved the integration, via spatial interpolation, of local climate information and WorldClim to reduce bias. For future climate scenarios the approach involved spatially downscaling of WorldClim (1km) to a finer resolution of 100m.The main advantages of the proposed approach are: 1. finer resolution, 2. locally adapted to the study area with use of higher number of meteorological stations and improved accuracy and bias, and 3. computationally efficient while making use of the existing resources provided by WorldClim.Two applications were presented to illustrate the practical consequences of improvements obtained with this method. The first is a measure of rainfall intensity, i.e. the R-factor, widely applied in erosion and catchment-scale studies. The second is an application to species distribution modelling, involving a range of bioclimatic variables. The results highlighted the importance of considering the spatial variability and structure of the data integrated in the modelling, and using data adapted to the geographical extent of the analysis, whenever possible.The results of the applications showed the advantage of using enhanced climatic data in applications such as the estimation of soil erosion, species range shift, carbon stocks and the provision of ecosystem services.

Journal

Science of the Total EnvironmentElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off