Enhancing anaerobic digestion and methane production of tetracycline wastewater in EGSB reactor with GAC/NZVI mediator

Enhancing anaerobic digestion and methane production of tetracycline wastewater in EGSB reactor... Packing nano mediators into anaerobic system is an attractive technology to strengthen refractory pollutant removal and methane production from wastewater, but is limited by the drawbacks such as easy loss and poor mass transfer. In this study, GAC/NZVI mediator was added into EGSB reactor to investigate the enhancement effects and mechanism for anaerobic digestion of tetracycline wastewater and its impacts on microbial community structure. The results indicated that GAC/NZVI could enhance COD and TOC removal by 12.1% and 10.3%, while have no evident influence on tetracycline removal and sulfide production. The biogas production and methane content were increased by 21.2% and 26.9%, respectively. GAC/NZVI addition resulted in formation of densely packed aggregates, and evidently increased the electrical conductivity and EPS content in sludge. Fe content in sludge was 20.43% with the loss of only 5.4% during 34 d operation. Microbial community analysis revealed that GAC/NZVI addition could both increase the Chao 1 richness index and Shannon diversity index of bacteria and archaea. It was notable that total methanogens contents increased from 74.7% to 81.74% at genera level, resulting in higher methane production, while Treponema increase might promote the degradation of tetracycline and its metabolite, leading to higher COD removal. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Research Elsevier

Enhancing anaerobic digestion and methane production of tetracycline wastewater in EGSB reactor with GAC/NZVI mediator

Loading next page...
 
/lp/elsevier/enhancing-anaerobic-digestion-and-methane-production-of-tetracycline-8E9k8HRbWO
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0043-1354
D.O.I.
10.1016/j.watres.2018.02.025
Publisher site
See Article on Publisher Site

Abstract

Packing nano mediators into anaerobic system is an attractive technology to strengthen refractory pollutant removal and methane production from wastewater, but is limited by the drawbacks such as easy loss and poor mass transfer. In this study, GAC/NZVI mediator was added into EGSB reactor to investigate the enhancement effects and mechanism for anaerobic digestion of tetracycline wastewater and its impacts on microbial community structure. The results indicated that GAC/NZVI could enhance COD and TOC removal by 12.1% and 10.3%, while have no evident influence on tetracycline removal and sulfide production. The biogas production and methane content were increased by 21.2% and 26.9%, respectively. GAC/NZVI addition resulted in formation of densely packed aggregates, and evidently increased the electrical conductivity and EPS content in sludge. Fe content in sludge was 20.43% with the loss of only 5.4% during 34 d operation. Microbial community analysis revealed that GAC/NZVI addition could both increase the Chao 1 richness index and Shannon diversity index of bacteria and archaea. It was notable that total methanogens contents increased from 74.7% to 81.74% at genera level, resulting in higher methane production, while Treponema increase might promote the degradation of tetracycline and its metabolite, leading to higher COD removal.

Journal

Water ResearchElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial