Enhanced removal of Se(VI) from water via pre-corrosion of zero-valent iron using H2O2/HCl: Effect of solution chemistry and mechanism investigation

Enhanced removal of Se(VI) from water via pre-corrosion of zero-valent iron using H2O2/HCl:... Although the removal of Se(VI) from water by using zero-valent iron (ZVI) is a promising method, passivation of ZVI severely inhibits its performance. To overcome such issue, we proposed an efficient technique to enhance Se(VI) removal via pre-corrosion of ZVI with H2O2/HCl in a short time (15 min). The resultant pcZVI suspension was weakly acidic (pH 4.56) and contained abundant aqueous Fe2+. 57Fe Mössbauer spectroscopy showed that pcZVI mainly consisted of Fe0 (66.2%), hydrated ferric oxide (26.3%), and Fe3O4 (7.5%). Efficient removal of Se(VI) from sulfate-rich solution was achieved by pcZVI compared with ZVI (in the absence and presence of H2O2) and acid-pretreated ZVI. Moreover, the efficient removal of Se(VI) by pcZVI sustained over a broad pH range (3–9) due to its strong buffering power. The presence of chloride, carbonate, nitrate, and common cations (Na+, K+, Ca2+, and Mg2+) posed negligible influence on the removal of Se(VI) by pcZVI, while the inhibitory effect induced by sulfate, silicate, and phosphate indicated the significance of Se(VI) adsorption as a prerequisite step for its removal. The consumption of aqueous Fe2+ was associated with Se(VI) removal, and X-ray absorption near edge structure revealed that the main pathway for Se(VI) removal by pcZVI was a stepwise reduction of Se(VI) to Se(IV) and then Se0 as the dominant final state (78.2%). Moreover, higher electron selectivity of pcZVI was attributed to the enhanced enrichment of Se oxyanions prior to their reduction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Research Elsevier

Enhanced removal of Se(VI) from water via pre-corrosion of zero-valent iron using H2O2/HCl: Effect of solution chemistry and mechanism investigation

Loading next page...
 
/lp/elsevier/enhanced-removal-of-se-vi-from-water-via-pre-corrosion-of-zero-valent-wn6Eqbh8E3
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0043-1354
D.O.I.
10.1016/j.watres.2018.01.038
Publisher site
See Article on Publisher Site

Abstract

Although the removal of Se(VI) from water by using zero-valent iron (ZVI) is a promising method, passivation of ZVI severely inhibits its performance. To overcome such issue, we proposed an efficient technique to enhance Se(VI) removal via pre-corrosion of ZVI with H2O2/HCl in a short time (15 min). The resultant pcZVI suspension was weakly acidic (pH 4.56) and contained abundant aqueous Fe2+. 57Fe Mössbauer spectroscopy showed that pcZVI mainly consisted of Fe0 (66.2%), hydrated ferric oxide (26.3%), and Fe3O4 (7.5%). Efficient removal of Se(VI) from sulfate-rich solution was achieved by pcZVI compared with ZVI (in the absence and presence of H2O2) and acid-pretreated ZVI. Moreover, the efficient removal of Se(VI) by pcZVI sustained over a broad pH range (3–9) due to its strong buffering power. The presence of chloride, carbonate, nitrate, and common cations (Na+, K+, Ca2+, and Mg2+) posed negligible influence on the removal of Se(VI) by pcZVI, while the inhibitory effect induced by sulfate, silicate, and phosphate indicated the significance of Se(VI) adsorption as a prerequisite step for its removal. The consumption of aqueous Fe2+ was associated with Se(VI) removal, and X-ray absorption near edge structure revealed that the main pathway for Se(VI) removal by pcZVI was a stepwise reduction of Se(VI) to Se(IV) and then Se0 as the dominant final state (78.2%). Moreover, higher electron selectivity of pcZVI was attributed to the enhanced enrichment of Se oxyanions prior to their reduction.

Journal

Water ResearchElsevier

Published: Apr 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off