Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars

Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars In this research, adsorption of Cu(II) and Cd(II) by biochars was investigated. To enhance the adsorption of these two metal ions, a simple modification of biochars by phosphoric acid (H3PO4) was carried out. The surface area was larger and the contents of oxygen-containing functional groups of modified biochars were more than pristine biochars. In comparison with pristine biochar, modified biochars sorbed Cu(II) and Cd(II) much more strongly. Surface area had significant effects on the sorption of Cu(II) and Cd(II) by modified biochars, it also resulted in the higher sorption for the pristine biochar at high pyrolysis temperature. X-ray photoelectron spectroscopy analyses indicated that the quantities of carboxyl (-COOH) and hydroxyl (-OH) functional groups of modified biochars were larger than those of pristine biochar at the same pyrolysis temperature. Compared with that of pristine biochars, the strong ability of -COOH and -OH of modified biochars to form complexes with Cu(II)/Cd(II) ions resulted in higher adsorption of these two metal ions. The phosphorus-containing groups of modified biochars, such as P=O and P=OOH from the result of Fourier transform infrared spectroscopy, interacted and also formed complexes with metal ions, possibly resulting in the enhanced adsorption of Cu(II) and Cd(II). Thus, sorption of metal ions by modified biochars was controlled by the mechanism of surface complexation between oxygen containing functional groups and metals. In general, the H3PO4 modification was an effective method to prepare biochars with a high affinity for the sorption of heavy metals. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Pollution Elsevier

Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars

Loading next page...
 
/lp/elsevier/enhanced-adsorption-of-cu-ii-and-cd-ii-by-phosphoric-acid-modified-5wWyj7WMns
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0269-7491
D.O.I.
10.1016/j.envpol.2017.07.004
Publisher site
See Article on Publisher Site

Abstract

In this research, adsorption of Cu(II) and Cd(II) by biochars was investigated. To enhance the adsorption of these two metal ions, a simple modification of biochars by phosphoric acid (H3PO4) was carried out. The surface area was larger and the contents of oxygen-containing functional groups of modified biochars were more than pristine biochars. In comparison with pristine biochar, modified biochars sorbed Cu(II) and Cd(II) much more strongly. Surface area had significant effects on the sorption of Cu(II) and Cd(II) by modified biochars, it also resulted in the higher sorption for the pristine biochar at high pyrolysis temperature. X-ray photoelectron spectroscopy analyses indicated that the quantities of carboxyl (-COOH) and hydroxyl (-OH) functional groups of modified biochars were larger than those of pristine biochar at the same pyrolysis temperature. Compared with that of pristine biochars, the strong ability of -COOH and -OH of modified biochars to form complexes with Cu(II)/Cd(II) ions resulted in higher adsorption of these two metal ions. The phosphorus-containing groups of modified biochars, such as P=O and P=OOH from the result of Fourier transform infrared spectroscopy, interacted and also formed complexes with metal ions, possibly resulting in the enhanced adsorption of Cu(II) and Cd(II). Thus, sorption of metal ions by modified biochars was controlled by the mechanism of surface complexation between oxygen containing functional groups and metals. In general, the H3PO4 modification was an effective method to prepare biochars with a high affinity for the sorption of heavy metals.

Journal

Environmental PollutionElsevier

Published: Oct 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off