Energy management supporting high penetration of solar photovoltaic generation for smart grid using solar forecasts and pumped hydro storage system

Energy management supporting high penetration of solar photovoltaic generation for smart grid... The growing penetration level of solar photovoltaic technology is becoming a challenging task in the smart energy management systems. The power generated from the solar photovoltaic (SPV) systems is intermittent. Therefore, it is imperative to best predict the incoming solar energy and estimate the power generated from SPV systems. In this paper, the solar energy forecasting is performed using a hybrid model consisting of neural networks and wavelet transform. The performance of the proposed model is evaluated based on both root mean square error (RMSE) and mean absolute error (MAE). To validate the proposed method the above results are compared with other existing approaches like ANN and found better within desired limits. There is a pumped hydro storage (PHS) in the configuration under study to meet the grid requirements. In order to obtain more accurate and practical results, demand response (DR) program has been also integrated in the formulation of the problem. An adequacy analysis is also carried out under various consumer flexibility scenarios. Performance analysis of the proposed energy management system has been done using MATLAB/Simulink platform, and the same is validated on 5 kW SPV system. Further, the proposed model can be applied to large-scale systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Renewable Energy Elsevier

Energy management supporting high penetration of solar photovoltaic generation for smart grid using solar forecasts and pumped hydro storage system

Loading next page...
 
/lp/elsevier/energy-management-supporting-high-penetration-of-solar-photovoltaic-NUamLIjcPq
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0960-1481
eISSN
1879-0682
D.O.I.
10.1016/j.renene.2017.10.113
Publisher site
See Article on Publisher Site

Abstract

The growing penetration level of solar photovoltaic technology is becoming a challenging task in the smart energy management systems. The power generated from the solar photovoltaic (SPV) systems is intermittent. Therefore, it is imperative to best predict the incoming solar energy and estimate the power generated from SPV systems. In this paper, the solar energy forecasting is performed using a hybrid model consisting of neural networks and wavelet transform. The performance of the proposed model is evaluated based on both root mean square error (RMSE) and mean absolute error (MAE). To validate the proposed method the above results are compared with other existing approaches like ANN and found better within desired limits. There is a pumped hydro storage (PHS) in the configuration under study to meet the grid requirements. In order to obtain more accurate and practical results, demand response (DR) program has been also integrated in the formulation of the problem. An adequacy analysis is also carried out under various consumer flexibility scenarios. Performance analysis of the proposed energy management system has been done using MATLAB/Simulink platform, and the same is validated on 5 kW SPV system. Further, the proposed model can be applied to large-scale systems.

Journal

Renewable EnergyElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial