Energy absorption capacity of braided frames under bending loads

Energy absorption capacity of braided frames under bending loads The energy absorption capacity of braided composite frames under bending loads was studied by conducting quasi-static four-point-bending tests. As specimen geometry C-shaped frame segments where chosen which show the typical failure behaviour of frames with open cross section, such as local buckling and crippling. The braiding manufacturing process offers the possibility to influence the fracture mechanics by a local hybridization of the braider yarns. Different hybridization concepts were investigated to identify design principles for braided frame structures with enhanced energy absorption capacity. The test results show that the post-failure energy absorption of braided frame segments can be significantly increased by a local modification of the braid architecture. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Composite Structures Elsevier

Energy absorption capacity of braided frames under bending loads

Loading next page...
 
/lp/elsevier/energy-absorption-capacity-of-braided-frames-under-bending-loads-cqQ0SO0Vhk
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier Ltd
ISSN
0263-8223
eISSN
1879-1085
D.O.I.
10.1016/j.compstruct.2015.09.008
Publisher site
See Article on Publisher Site

Abstract

The energy absorption capacity of braided composite frames under bending loads was studied by conducting quasi-static four-point-bending tests. As specimen geometry C-shaped frame segments where chosen which show the typical failure behaviour of frames with open cross section, such as local buckling and crippling. The braiding manufacturing process offers the possibility to influence the fracture mechanics by a local hybridization of the braider yarns. Different hybridization concepts were investigated to identify design principles for braided frame structures with enhanced energy absorption capacity. The test results show that the post-failure energy absorption of braided frame segments can be significantly increased by a local modification of the braid architecture.

Journal

Composite StructuresElsevier

Published: Dec 15, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial