Reprint of 'Elemental and mineralogical analysis of marine and coastal sediments from Phra Thong Island, Thailand: Insights into the provenance of coastal hazard deposits'

Reprint of 'Elemental and mineralogical analysis of marine and coastal sediments from Phra Thong... Sediment records left by coastal hazards (e.g. tsunami and/or storms) may shed light on the sedimentary and hydrodynamic processes happening during such events. Modern onshore and offshore sediment samples were compared with the 2004 Indian Ocean Tsunami, three palaeotsunami and a 2007 storm deposit from Phra Thong Island, Thailand, to determine provenance relationships between these coastal overwash deposits. Sedimentological and stratigraphic characteristics are generally inadequate to discriminate tsunami and storm deposits so a statistical approach (including cluster analysis, principal component analysis and discriminant function analysis) was used based on grain size, mineralogy and trace element geochemistry. The mineral content and trace element geochemistry are statistically inadequate to distinguish the provenance of the modern storm and tsunami deposits at this site, but the mean grain size can potentially discriminate these overwash deposits. The 2007 storm surge deposits were most likely sourced from the onshore sediment environment whereas all four tsunami units statistically differ from each other indicating diverse sediment sources. Our statistical analyses suggest that the 2004 tsunami deposit was mainly derived from nearshore marine sediments. The uppermost palaeotsunami deposit was possibly derived from both onshore and nearshore materials while the lower palaeotsunami deposits showed no clear evidence of their sediment sources. Such complexity raises questions about the origin of the sediments in the tsunami and storm deposits and strongly suggests that local context and palaeogeography are important aspects that cannot be ignored in tsunami provenance studies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Marine Geology Elsevier

Reprint of 'Elemental and mineralogical analysis of marine and coastal sediments from Phra Thong Island, Thailand: Insights into the provenance of coastal hazard deposits'

Loading next page...
 
/lp/elsevier/elemental-and-mineralogical-analysis-of-marine-and-coastal-sediments-CkLPuI1to8
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0025-3227
eISSN
1872-6151
D.O.I.
10.1016/j.margeo.2018.01.006
Publisher site
See Article on Publisher Site

Abstract

Sediment records left by coastal hazards (e.g. tsunami and/or storms) may shed light on the sedimentary and hydrodynamic processes happening during such events. Modern onshore and offshore sediment samples were compared with the 2004 Indian Ocean Tsunami, three palaeotsunami and a 2007 storm deposit from Phra Thong Island, Thailand, to determine provenance relationships between these coastal overwash deposits. Sedimentological and stratigraphic characteristics are generally inadequate to discriminate tsunami and storm deposits so a statistical approach (including cluster analysis, principal component analysis and discriminant function analysis) was used based on grain size, mineralogy and trace element geochemistry. The mineral content and trace element geochemistry are statistically inadequate to distinguish the provenance of the modern storm and tsunami deposits at this site, but the mean grain size can potentially discriminate these overwash deposits. The 2007 storm surge deposits were most likely sourced from the onshore sediment environment whereas all four tsunami units statistically differ from each other indicating diverse sediment sources. Our statistical analyses suggest that the 2004 tsunami deposit was mainly derived from nearshore marine sediments. The uppermost palaeotsunami deposit was possibly derived from both onshore and nearshore materials while the lower palaeotsunami deposits showed no clear evidence of their sediment sources. Such complexity raises questions about the origin of the sediments in the tsunami and storm deposits and strongly suggests that local context and palaeogeography are important aspects that cannot be ignored in tsunami provenance studies.

Journal

Marine GeologyElsevier

Published: Feb 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off