Electricity generation from pyrolysis gas produced in charcoal manufacture: Technical and economic analysis

Electricity generation from pyrolysis gas produced in charcoal manufacture: Technical and... Brazilian steel industry based on charcoal is unique in the world, making Brazil the largest world charcoal producer and the only one that produces green pig iron in large scale, a low-carbon and economic option to the traditional pig iron produced from coal coke. The renewable charcoal originates from the slow pyrolysis of eucalyptus wood produced in high productivity reforestation farms thought traditional batch reactors. Unfortunately, the state-of-the-art of charcoal making in Brazil do not comprise the pyrolysis gases utilization, wasting more than 30% of wood energy decreasing air quality and producing environmental and social impacts. Therefore, in this sense, the goal of this work is to evaluate the possibility to recovery this energy to produce electricity, and issues the topics related to the use of a very lean fuel, with flammability problems, which varies its composition over time, and the lack of water to be used as cooling mean for the thermodynamic cycles in the eucalyptus farms. The gases Lower Flammability Limit (LFL) was analyzed by the Calculated Adiabatic Flame Temperature (CAFT) method showing that in the first half of pyrolysis, the gases are generally under the LFL line, what could be solved by the gases pre-heating or mixing with richer fuel produced by kilns in advanced carbonization stage. Results showed an average gas Lower Heating Value (LHV) of 1323 kJ/kg. To overcome gas production instability a cluster system of 120 rectangular carbonization kilns working in synchrony was accessed through a computational tool, where it was found a minimum thermal power available of 57.5 MWth or 25.6% of initial wood energy content. Three energy conversion technologies were evaluated: the Steam Rankine Cycle (SRC), the Externally Fired Gas Turbine (EFGT) and the Organic Rankine Cycle (ORC). In this work, it was found that the efficiency of the SRC, EFGT and ORC conversion technologies are 24.0%, 19.3% and 23.7%, respectively. An economic analysis indicated the SRC as the most viable technology with a potential to generate 0.93 MWhel per ton of charcoal produced. Brazil has as estimated energy loss of 2.5 Mtoe (million tonne of oil equivalent) annually in the form of carbonization gases, which could be used to produce up to 5644 GWhel of electricity and reduce the Greenhouse Gases (GHG) emissions up to 15 Mton CO2–eq. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Cleaner Production Elsevier

Loading next page...
 
/lp/elsevier/electricity-generation-from-pyrolysis-gas-produced-in-charcoal-82Fak56DK5
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0959-6526
D.O.I.
10.1016/j.jclepro.2018.05.101
Publisher site
See Article on Publisher Site

Abstract

Brazilian steel industry based on charcoal is unique in the world, making Brazil the largest world charcoal producer and the only one that produces green pig iron in large scale, a low-carbon and economic option to the traditional pig iron produced from coal coke. The renewable charcoal originates from the slow pyrolysis of eucalyptus wood produced in high productivity reforestation farms thought traditional batch reactors. Unfortunately, the state-of-the-art of charcoal making in Brazil do not comprise the pyrolysis gases utilization, wasting more than 30% of wood energy decreasing air quality and producing environmental and social impacts. Therefore, in this sense, the goal of this work is to evaluate the possibility to recovery this energy to produce electricity, and issues the topics related to the use of a very lean fuel, with flammability problems, which varies its composition over time, and the lack of water to be used as cooling mean for the thermodynamic cycles in the eucalyptus farms. The gases Lower Flammability Limit (LFL) was analyzed by the Calculated Adiabatic Flame Temperature (CAFT) method showing that in the first half of pyrolysis, the gases are generally under the LFL line, what could be solved by the gases pre-heating or mixing with richer fuel produced by kilns in advanced carbonization stage. Results showed an average gas Lower Heating Value (LHV) of 1323 kJ/kg. To overcome gas production instability a cluster system of 120 rectangular carbonization kilns working in synchrony was accessed through a computational tool, where it was found a minimum thermal power available of 57.5 MWth or 25.6% of initial wood energy content. Three energy conversion technologies were evaluated: the Steam Rankine Cycle (SRC), the Externally Fired Gas Turbine (EFGT) and the Organic Rankine Cycle (ORC). In this work, it was found that the efficiency of the SRC, EFGT and ORC conversion technologies are 24.0%, 19.3% and 23.7%, respectively. An economic analysis indicated the SRC as the most viable technology with a potential to generate 0.93 MWhel per ton of charcoal produced. Brazil has as estimated energy loss of 2.5 Mtoe (million tonne of oil equivalent) annually in the form of carbonization gases, which could be used to produce up to 5644 GWhel of electricity and reduce the Greenhouse Gases (GHG) emissions up to 15 Mton CO2–eq.

Journal

Journal of Cleaner ProductionElsevier

Published: Sep 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off