Efficient multi-objective optimization algorithm for hybrid flow shop scheduling problems with setup energy consumptions

Efficient multi-objective optimization algorithm for hybrid flow shop scheduling problems with... This paper proposes an energy-aware multi-objective optimization algorithm (EA-MOA) for solving the hybrid flow shop (HFS) scheduling problem with consideration of the setup energy consumptions. Two objectives, namely, the minimization of the makespan and the energy consumptions, are considered simultaneously. In the proposed algorithm, first, each solution is represented by two vectors: the machine assignment priority vector and the scheduling vector. Second, four types of decoding approaches are investigated to consider both objectives. Third, two efficient crossover operators, namely, Single-point Pareto-based crossover (SPBC) and Two-point Pareto-based crossover (TPBC) are developed to utilize the parent solutions from the Pareto archive set. Then, considering the problem structure, eight neighborhood structures and an adaptive neighborhood selection method are designed. In addition, a right-shifting procedure is utilized to decrease the processing duration for all machines, thereby improving the energy consumption objective of the given solution. Furthermore, several deep-exploitation and deep-exploration strategies are developed to balance the global and local search abilities. Finally, the proposed algorithm is tested on sets of well-known benchmark instances. Through the analysis of the experimental results, the highly effective proposed EA-MOA algorithm is compared with several efficient algorithms from the literature. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Cleaner Production Elsevier

Efficient multi-objective optimization algorithm for hybrid flow shop scheduling problems with setup energy consumptions

Loading next page...
 
/lp/elsevier/efficient-multi-objective-optimization-algorithm-for-hybrid-flow-shop-tcADJ8C5ic
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0959-6526
D.O.I.
10.1016/j.jclepro.2018.02.004
Publisher site
See Article on Publisher Site

Abstract

This paper proposes an energy-aware multi-objective optimization algorithm (EA-MOA) for solving the hybrid flow shop (HFS) scheduling problem with consideration of the setup energy consumptions. Two objectives, namely, the minimization of the makespan and the energy consumptions, are considered simultaneously. In the proposed algorithm, first, each solution is represented by two vectors: the machine assignment priority vector and the scheduling vector. Second, four types of decoding approaches are investigated to consider both objectives. Third, two efficient crossover operators, namely, Single-point Pareto-based crossover (SPBC) and Two-point Pareto-based crossover (TPBC) are developed to utilize the parent solutions from the Pareto archive set. Then, considering the problem structure, eight neighborhood structures and an adaptive neighborhood selection method are designed. In addition, a right-shifting procedure is utilized to decrease the processing duration for all machines, thereby improving the energy consumption objective of the given solution. Furthermore, several deep-exploitation and deep-exploration strategies are developed to balance the global and local search abilities. Finally, the proposed algorithm is tested on sets of well-known benchmark instances. Through the analysis of the experimental results, the highly effective proposed EA-MOA algorithm is compared with several efficient algorithms from the literature.

Journal

Journal of Cleaner ProductionElsevier

Published: Apr 20, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off