Efficacy of dust aerosol forecasts for East Asia using the adjoint of GEOS-Chem with ground-based observations

Efficacy of dust aerosol forecasts for East Asia using the adjoint of GEOS-Chem with ground-based... Asian dust storms occur often and have a great impact on East Asia and the western Pacific in spring. Early warnings based on reliable forecasts of dust storms thus are crucial for protecting human health and industry. Here we explore the efficacy of 4-D variational method-based data assimilation in a chemical transport model for dust storm forecasts in East Asia. We use a 3-D global chemical transport model (GEOS-Chem) and its adjoint model with surface PM10 mass concentration observations. We evaluate the model for several severe dust storm events, which occurred in May 2007 and March 2011 in East Asia. First of all, simulated the PM10 mass concentrations with the forward model showed large discrepancies compared with PM10 mass concentrations observed in China, Korea, and Japan, implying large uncertainties of simulated dust emission fluxes in the source regions. Based on our adjoint model constrained by observations for the whole period of each event, the reproduction of the spatial and temporal distributions of observations over East Asia was substantially improved (regression slopes from 0.15 to 2.81 to 0.85–1.02 and normalized mean biases from −74%–151% to −34%–1%). We then examine the efficacy of the data assimilation system for daily dust storm forecasts based on the adjoint model including previous day observations to update the initial condition of the forward model simulation for the next day. The forecast results successfully captured the spatial and temporal variations of ground-based observations in downwind regions, indicating that the data assimilation system with ground-based observations effectively forecasts dust storms, especially in downwind regions. However, the efficacy is limited in nearby the dust source regions, including Mongolia and North China, due to the lack of observations for constraining the model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Pollution Elsevier

Efficacy of dust aerosol forecasts for East Asia using the adjoint of GEOS-Chem with ground-based observations

Loading next page...
 
/lp/elsevier/efficacy-of-dust-aerosol-forecasts-for-east-asia-using-the-adjoint-of-jBWPOXCqq5
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0269-7491
D.O.I.
10.1016/j.envpol.2017.12.025
Publisher site
See Article on Publisher Site

Abstract

Asian dust storms occur often and have a great impact on East Asia and the western Pacific in spring. Early warnings based on reliable forecasts of dust storms thus are crucial for protecting human health and industry. Here we explore the efficacy of 4-D variational method-based data assimilation in a chemical transport model for dust storm forecasts in East Asia. We use a 3-D global chemical transport model (GEOS-Chem) and its adjoint model with surface PM10 mass concentration observations. We evaluate the model for several severe dust storm events, which occurred in May 2007 and March 2011 in East Asia. First of all, simulated the PM10 mass concentrations with the forward model showed large discrepancies compared with PM10 mass concentrations observed in China, Korea, and Japan, implying large uncertainties of simulated dust emission fluxes in the source regions. Based on our adjoint model constrained by observations for the whole period of each event, the reproduction of the spatial and temporal distributions of observations over East Asia was substantially improved (regression slopes from 0.15 to 2.81 to 0.85–1.02 and normalized mean biases from −74%–151% to −34%–1%). We then examine the efficacy of the data assimilation system for daily dust storm forecasts based on the adjoint model including previous day observations to update the initial condition of the forward model simulation for the next day. The forecast results successfully captured the spatial and temporal variations of ground-based observations in downwind regions, indicating that the data assimilation system with ground-based observations effectively forecasts dust storms, especially in downwind regions. However, the efficacy is limited in nearby the dust source regions, including Mongolia and North China, due to the lack of observations for constraining the model.

Journal

Environmental PollutionElsevier

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off