Effects of selected extrusion parameters on physicochemical properties and in vitro starch digestibility and β-glucan extractability of whole grain oats

Effects of selected extrusion parameters on physicochemical properties and in vitro starch... Whole grain oat flour was extruded under different moisture contents (15%, 18%, 21%), barrel temperatures (100 °C, 130 °C), and screw speeds (160 rpm, 300 rpm, 450 rpm), and selected physicochemical properties, in vitro starch digestibility, and β-glucan extractability of the extrudates were analyzed. An increase in screw speed resulted in an increase in radial expansion index, water absorption index, and water solubility index. Screw speed significantly affected slowly and rapidly digestible starch. Moderate screw speed (300 rpm) led to higher slowly digestible starch with an accompanying decrease in rapidly digestible starch. Low moisture conditions (15%) resulted in the highest resistant starch and water-extractable β-glucan. Under the conditions used in this study, extrusion did not result in changes in water-extractable β-glucan molecular weight. Thus, extrusion might be beneficial in improving functionality and consumer acceptability by affecting physicochemical properties, in vitro starch digestibility, and β-glucan extractability of oat extrudates. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Cereal Science Elsevier

Effects of selected extrusion parameters on physicochemical properties and in vitro starch digestibility and β-glucan extractability of whole grain oats

Loading next page...
 
/lp/elsevier/effects-of-selected-extrusion-parameters-on-physicochemical-properties-M4PnluXQO3
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0733-5210
eISSN
1095-9963
D.O.I.
10.1016/j.jcs.2016.05.001
Publisher site
See Article on Publisher Site

Abstract

Whole grain oat flour was extruded under different moisture contents (15%, 18%, 21%), barrel temperatures (100 °C, 130 °C), and screw speeds (160 rpm, 300 rpm, 450 rpm), and selected physicochemical properties, in vitro starch digestibility, and β-glucan extractability of the extrudates were analyzed. An increase in screw speed resulted in an increase in radial expansion index, water absorption index, and water solubility index. Screw speed significantly affected slowly and rapidly digestible starch. Moderate screw speed (300 rpm) led to higher slowly digestible starch with an accompanying decrease in rapidly digestible starch. Low moisture conditions (15%) resulted in the highest resistant starch and water-extractable β-glucan. Under the conditions used in this study, extrusion did not result in changes in water-extractable β-glucan molecular weight. Thus, extrusion might be beneficial in improving functionality and consumer acceptability by affecting physicochemical properties, in vitro starch digestibility, and β-glucan extractability of oat extrudates.

Journal

Journal of Cereal ScienceElsevier

Published: Jul 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial