Effects of road infrastructure on forest value across a tri-national Amazonian frontier

Effects of road infrastructure on forest value across a tri-national Amazonian frontier Road construction demonstrably accelerates deforestation rates in tropical forests, but its consequences for forest degradation remain less clear. We estimated a series of forest value metrics including components of biodiversity, carbon stocks, and timber and non-timber forest product resources, along the recently paved Inter-Oceanic Highway (IOH) integrating Brazil and Peru along the Bolivian border. We installed 69 vegetation plots in intact terra firme forests representative of local community holdings near and far from the IOH, and we characterized 15 components of forest value for each plot.We observed strong geographic gradients in forest value components across the region, with increases from west to east in aboveground biomass and in the abundance of timber and non-timber forest product trees and regeneration. Plots in communities in Pando, Bolivia, where the IOH remains in part unpaved, had the highest aboveground biomass, standing timber volumes and Brazil nut tree density. In contrast, communities in Madre de Dios, Peru, where settlements and unpaved portions of the IOH have existed for decades, and in Acre, Brazil, where paving of the IOH has been underway for more than a decade, were more degraded. Seven of the fifteen forest value components we measured increased with increasing distance from the IOH, although the magnitude of these effects was weak. Landscape scale remote sensing analyses showed much stronger effects of road proximity on deforestation. We suggest that remote sensing techniques including canopy spectral signatures might be calibrated to characterize multiple components of forest value, so that we can estimate landscape scale impacts of infrastructure developments on both deforestation and forest degradation in tropical regions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biological Conservation Elsevier

Loading next page...
 
/lp/elsevier/effects-of-road-infrastructure-on-forest-value-across-a-tri-national-cUR7BayZQ5
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier B.V.
ISSN
0006-3207
D.O.I.
10.1016/j.biocon.2015.08.024
Publisher site
See Article on Publisher Site

Abstract

Road construction demonstrably accelerates deforestation rates in tropical forests, but its consequences for forest degradation remain less clear. We estimated a series of forest value metrics including components of biodiversity, carbon stocks, and timber and non-timber forest product resources, along the recently paved Inter-Oceanic Highway (IOH) integrating Brazil and Peru along the Bolivian border. We installed 69 vegetation plots in intact terra firme forests representative of local community holdings near and far from the IOH, and we characterized 15 components of forest value for each plot.We observed strong geographic gradients in forest value components across the region, with increases from west to east in aboveground biomass and in the abundance of timber and non-timber forest product trees and regeneration. Plots in communities in Pando, Bolivia, where the IOH remains in part unpaved, had the highest aboveground biomass, standing timber volumes and Brazil nut tree density. In contrast, communities in Madre de Dios, Peru, where settlements and unpaved portions of the IOH have existed for decades, and in Acre, Brazil, where paving of the IOH has been underway for more than a decade, were more degraded. Seven of the fifteen forest value components we measured increased with increasing distance from the IOH, although the magnitude of these effects was weak. Landscape scale remote sensing analyses showed much stronger effects of road proximity on deforestation. We suggest that remote sensing techniques including canopy spectral signatures might be calibrated to characterize multiple components of forest value, so that we can estimate landscape scale impacts of infrastructure developments on both deforestation and forest degradation in tropical regions.

Journal

Biological ConservationElsevier

Published: Nov 1, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off