Effects of microRNAs on skeletal muscle development

Effects of microRNAs on skeletal muscle development MicroRNAs (miRNAs) are small (about 22 nucleotides) noncoding RNAs, which were highly conserved among mammals. They have ushered in a new era in molecular biology over twenty years. They can negatively regulate gene expression at the posttranscriptional level through the principle of complementary base pairing with the 3′ untranslated region (UTR) of their target mRNAs and induce their degradation. They involve in tissue morphogenesis, cellular processes like apoptosis, and major signaling pathways. Previous studies have promoted our understanding that miRNAs play an important role in myogenesis and have a big impact on muscle mass, muscle fiber type and muscle diseases. Many researchers have provided evidence of the involvement of muscle-specific and enriched miRNAs in the individual stages of skeletal muscle development as well as of their significant influence on muscle metabolism during quiescence, proliferation, differentiation and regeneration. Here, we focus on the microRNAs that related to the development of skeletal muscle. For example, some microRNAs are upregulated in differentiated skeletal muscle and can promote differentiation, like, miR-1, miR-24, miR-26a, miR-181 and miR-206. However, some microRNAs highly expressed in proliferating myoblasts, downregulated in differentiated and could inhibit differentiation, like MiR-221 and miR-222. Some others not only promote skeletal muscle proliferation, but also promote differentiation, like miR-214. Studying the miRNAs' regulatory mechanisms in skeletal development will help us know more about the knowledge of miRNAs in muscle developmental biology and make us learn more about involved signal pathway. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Gene Elsevier

Effects of microRNAs on skeletal muscle development

Loading next page...
 
/lp/elsevier/effects-of-micrornas-on-skeletal-muscle-development-O8bM0rnbrn
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0378-1119
eISSN
1879-0038
D.O.I.
10.1016/j.gene.2018.05.039
Publisher site
See Article on Publisher Site

Abstract

MicroRNAs (miRNAs) are small (about 22 nucleotides) noncoding RNAs, which were highly conserved among mammals. They have ushered in a new era in molecular biology over twenty years. They can negatively regulate gene expression at the posttranscriptional level through the principle of complementary base pairing with the 3′ untranslated region (UTR) of their target mRNAs and induce their degradation. They involve in tissue morphogenesis, cellular processes like apoptosis, and major signaling pathways. Previous studies have promoted our understanding that miRNAs play an important role in myogenesis and have a big impact on muscle mass, muscle fiber type and muscle diseases. Many researchers have provided evidence of the involvement of muscle-specific and enriched miRNAs in the individual stages of skeletal muscle development as well as of their significant influence on muscle metabolism during quiescence, proliferation, differentiation and regeneration. Here, we focus on the microRNAs that related to the development of skeletal muscle. For example, some microRNAs are upregulated in differentiated skeletal muscle and can promote differentiation, like, miR-1, miR-24, miR-26a, miR-181 and miR-206. However, some microRNAs highly expressed in proliferating myoblasts, downregulated in differentiated and could inhibit differentiation, like MiR-221 and miR-222. Some others not only promote skeletal muscle proliferation, but also promote differentiation, like miR-214. Studying the miRNAs' regulatory mechanisms in skeletal development will help us know more about the knowledge of miRNAs in muscle developmental biology and make us learn more about involved signal pathway.

Journal

GeneElsevier

Published: Aug 20, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off