Effects of continental anthropogenic sources on organic aerosols in the coastal atmosphere of East China

Effects of continental anthropogenic sources on organic aerosols in the coastal atmosphere of... Although organic compounds in marine atmospheric aerosols have significant effects on climate and marine ecosystems, they have rarely been studied, especially in the coastal regions of East China. To assess the origins of the organic aerosols in the East China coastal atmosphere, PM2.5 samples were collected from the atmospheres of the Yellow Sea, the East China Sea, and Changdao Island during the CAPTAIN (Campaign of Air PolluTion At INshore Areas of Eastern China) field campaign in the spring of 2011. The marine atmospheric aerosol samples that were collected were grouped based on the backward trajectories of their air masses. The organic carbon concentrations in the PM2.5 samples from the marine and Changdao Island atmospheres were 5.5 ± 3.1 μgC/m3 and 6.9 ± 2.4 μgC/m3, respectively, which is higher than in other coastal water atmospheres. The concentration of polycyclic aromatic hydrocarbons (PAHs) in the marine atmospheric PM2.5 samples was 17.0 ± 20.2 ng/m3, indicating significant continental anthropogenic influences. The influences of fossil fuels and biomass burning on the composition of organic aerosols in the coastal atmosphere of East China were found to be highly dependent on the origins of the air masses. Diesel combustion had a strong impact on air masses from the Yangtze River Delta (YRD), and gasoline emissions had a more significant impact on the “North China” marine atmospheric samples. The “Northeast China” marine atmospheric samples were most impacted by biomass burning. Coal combustion contributed significantly to the compositions of all of the atmospheric samples. The proportions of secondary compounds increased as samples aged in the marine atmosphere indicating that photochemical oxidation occured during transport. Our results quantified ecosystem effects on marine atmospheric aerosols and highlighted the uncertainties that arise when modeling marine atmospheric PM2.5 without considering high spatial resolution source data and meteorological parameters. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Pollution Elsevier

Effects of continental anthropogenic sources on organic aerosols in the coastal atmosphere of East China

Loading next page...
 
/lp/elsevier/effects-of-continental-anthropogenic-sources-on-organic-aerosols-in-bjqA1U8Idm
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0269-7491
D.O.I.
10.1016/j.envpol.2017.05.015
Publisher site
See Article on Publisher Site

Abstract

Although organic compounds in marine atmospheric aerosols have significant effects on climate and marine ecosystems, they have rarely been studied, especially in the coastal regions of East China. To assess the origins of the organic aerosols in the East China coastal atmosphere, PM2.5 samples were collected from the atmospheres of the Yellow Sea, the East China Sea, and Changdao Island during the CAPTAIN (Campaign of Air PolluTion At INshore Areas of Eastern China) field campaign in the spring of 2011. The marine atmospheric aerosol samples that were collected were grouped based on the backward trajectories of their air masses. The organic carbon concentrations in the PM2.5 samples from the marine and Changdao Island atmospheres were 5.5 ± 3.1 μgC/m3 and 6.9 ± 2.4 μgC/m3, respectively, which is higher than in other coastal water atmospheres. The concentration of polycyclic aromatic hydrocarbons (PAHs) in the marine atmospheric PM2.5 samples was 17.0 ± 20.2 ng/m3, indicating significant continental anthropogenic influences. The influences of fossil fuels and biomass burning on the composition of organic aerosols in the coastal atmosphere of East China were found to be highly dependent on the origins of the air masses. Diesel combustion had a strong impact on air masses from the Yangtze River Delta (YRD), and gasoline emissions had a more significant impact on the “North China” marine atmospheric samples. The “Northeast China” marine atmospheric samples were most impacted by biomass burning. Coal combustion contributed significantly to the compositions of all of the atmospheric samples. The proportions of secondary compounds increased as samples aged in the marine atmosphere indicating that photochemical oxidation occured during transport. Our results quantified ecosystem effects on marine atmospheric aerosols and highlighted the uncertainties that arise when modeling marine atmospheric PM2.5 without considering high spatial resolution source data and meteorological parameters.

Journal

Environmental PollutionElsevier

Published: Oct 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off