Effectiveness of a bubble-plume mixing system for managing phytoplankton in lakes and reservoirs

Effectiveness of a bubble-plume mixing system for managing phytoplankton in lakes and reservoirs Bubble-plume mixing systems are often deployed in eutrophic lakes and reservoirs to manage phytoplankton taxa. Unfortunately, inconsistent outcomes from bubble-plume (induced) mixing are often reported in the literature. The present study investigates the response of phytoplankton to induced mixing using a whole-reservoir field experiment and a three-dimensional hydrodynamic model (Si3D) coupled with the Aquatic EcoDynamics (AED) model through the framework for aquatic biogeochemical modelling (FABM). The coupled Si3D-AED model is validated against a 24-h field mixing experiment and subsequently used for a numerical parametric study to investigate phytoplankton responses to various induced mixing scenarios in which the phytoplankton settling rate, phytoplankton growth rate, reservoir depth, and mixing system diffuser depth were sequentially varied. Field observations during the mixing experiment suggest that the total phytoplankton concentration (measured in μg/L) across the reservoir was reduced by nearly 10% during the 24-h mixing period. The numerical modeling results show that phytoplankton concentration may be substantially affected by the functional traits of the phytoplankton and the deployment depth of the mixing diffuser. Interestingly, the numerical results indicate that the phytoplankton concentration is controlled by reduced growth rates due to light limitation in deep reservoirs (>20 m), whereas settling loss is a more important factor in shallow reservoirs during the mixing period. In addition, the coupled Si3D-AED model results suggest that deploying the mixing diffuser deeper in the water column to increase mixing depth may generally improve the successful management of cyanobacteria using bubble-plume mixing systems. Thus, the coupled Si3D-AED model introduced in the present study can assist with the design and operation of bubble-plume mixing systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecological Engineering Elsevier

Effectiveness of a bubble-plume mixing system for managing phytoplankton in lakes and reservoirs

Loading next page...
 
/lp/elsevier/effectiveness-of-a-bubble-plume-mixing-system-for-managing-z6uNfbhEoH
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0925-8574
eISSN
1872-6992
D.O.I.
10.1016/j.ecoleng.2018.01.002
Publisher site
See Article on Publisher Site

Abstract

Bubble-plume mixing systems are often deployed in eutrophic lakes and reservoirs to manage phytoplankton taxa. Unfortunately, inconsistent outcomes from bubble-plume (induced) mixing are often reported in the literature. The present study investigates the response of phytoplankton to induced mixing using a whole-reservoir field experiment and a three-dimensional hydrodynamic model (Si3D) coupled with the Aquatic EcoDynamics (AED) model through the framework for aquatic biogeochemical modelling (FABM). The coupled Si3D-AED model is validated against a 24-h field mixing experiment and subsequently used for a numerical parametric study to investigate phytoplankton responses to various induced mixing scenarios in which the phytoplankton settling rate, phytoplankton growth rate, reservoir depth, and mixing system diffuser depth were sequentially varied. Field observations during the mixing experiment suggest that the total phytoplankton concentration (measured in μg/L) across the reservoir was reduced by nearly 10% during the 24-h mixing period. The numerical modeling results show that phytoplankton concentration may be substantially affected by the functional traits of the phytoplankton and the deployment depth of the mixing diffuser. Interestingly, the numerical results indicate that the phytoplankton concentration is controlled by reduced growth rates due to light limitation in deep reservoirs (>20 m), whereas settling loss is a more important factor in shallow reservoirs during the mixing period. In addition, the coupled Si3D-AED model results suggest that deploying the mixing diffuser deeper in the water column to increase mixing depth may generally improve the successful management of cyanobacteria using bubble-plume mixing systems. Thus, the coupled Si3D-AED model introduced in the present study can assist with the design and operation of bubble-plume mixing systems.

Journal

Ecological EngineeringElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off