Effective elastic properties of a composite containing multiple types of anisotropic ellipsoidal inclusions, with application to the attachment of tendon to bone

Effective elastic properties of a composite containing multiple types of anisotropic ellipsoidal... Estimates of the effective stiffness of a composite containing multiple types of inclusions are needed for the design and study of a range of material systems in engineering and physiology. While excellent estimates and tight bounds exist for composite systems containing specific classes and distributions of identical inclusions, these are not easily generalized to systems with multiple types of inclusions. The best estimate available for a composite containing multiple classes of inclusions arises from the Kanaun–Jeulin approach. However, this method is analogous to a generalized Benveniste approach, and therefore suffers from the same limitations: while excellent for low volume fractions of inclusions, the Kanaun–Jeullin and Benveniste estimates liebelow three-point bounds at higher volume fractions. Here, we present an estimate for composites containing multiple classes of aligned ellipsoidal inclusions that lies within known three-point bounds at relatively higher volume fractions of inclusions and that is applicable to many engineering and biological composites. The approach involves replacing the averaged strains used in the Kanaun-Jeulin method with an effective strain measure. We demonstrate application of the constitutive model to the graded tissue system at the attachment of tendon to bone. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Mechanics and Physics of Solids Elsevier

Effective elastic properties of a composite containing multiple types of anisotropic ellipsoidal inclusions, with application to the attachment of tendon to bone

Loading next page...
 
/lp/elsevier/effective-elastic-properties-of-a-composite-containing-multiple-types-A0HpyJ71cR
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier Ltd
ISSN
0022-5096
eISSN
1873-4782
D.O.I.
10.1016/j.jmps.2015.05.017
Publisher site
See Article on Publisher Site

Abstract

Estimates of the effective stiffness of a composite containing multiple types of inclusions are needed for the design and study of a range of material systems in engineering and physiology. While excellent estimates and tight bounds exist for composite systems containing specific classes and distributions of identical inclusions, these are not easily generalized to systems with multiple types of inclusions. The best estimate available for a composite containing multiple classes of inclusions arises from the Kanaun–Jeulin approach. However, this method is analogous to a generalized Benveniste approach, and therefore suffers from the same limitations: while excellent for low volume fractions of inclusions, the Kanaun–Jeullin and Benveniste estimates liebelow three-point bounds at higher volume fractions. Here, we present an estimate for composites containing multiple classes of aligned ellipsoidal inclusions that lies within known three-point bounds at relatively higher volume fractions of inclusions and that is applicable to many engineering and biological composites. The approach involves replacing the averaged strains used in the Kanaun-Jeulin method with an effective strain measure. We demonstrate application of the constitutive model to the graded tissue system at the attachment of tendon to bone.

Journal

Journal of the Mechanics and Physics of SolidsElsevier

Published: Sep 1, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off