Effective elastic constants of wire mesh material studied by theoretical and finite element methods

Effective elastic constants of wire mesh material studied by theoretical and finite element methods Wire mesh is a high strength/stiffness material with versatility and little defect. This paper proposed a theoretical model to calculate the anisotropic effective elastic constants of a wire mesh material, and finite element method (FEM) is also carried out to validate the proposed model. Considering the effect of wire waviness and the discontinuity between the warp and weft wires, the analytic expressions of effective elastic modulus, shear modulus and Poisson’s ratio were obtained. The results show a good agreement between the theoretical and FEM, revealing that the theoretical method gives a reliable prediction. The in-plane effective elastic modulus is higher about one order of magnitude than the out-of-plane modulus. Conversely, the out-of-plane shear properties are superior to the in-plane properties. The effective modulus are significantly affected by wire radius R, opening length L and the ratio R/L. With the increase of R/L, the effective modulus of variant directions increases with different modalities. The wire waviness leads to much more in-plane stiffness-knockdown of wire mesh with thicker wires. Meanwhile, the out-of-plane stiffness is found to be weakened by the tiny contact area between the warp and weft wires. Stiffness reduction factors were proposed to describe the in-plane and out-of-plane stiffness-knockdown. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Composite Structures Elsevier

Effective elastic constants of wire mesh material studied by theoretical and finite element methods

Loading next page...
 
/lp/elsevier/effective-elastic-constants-of-wire-mesh-material-studied-by-W2UBOGT8HW
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0263-8223
eISSN
1879-1085
D.O.I.
10.1016/j.compstruct.2017.09.103
Publisher site
See Article on Publisher Site

Abstract

Wire mesh is a high strength/stiffness material with versatility and little defect. This paper proposed a theoretical model to calculate the anisotropic effective elastic constants of a wire mesh material, and finite element method (FEM) is also carried out to validate the proposed model. Considering the effect of wire waviness and the discontinuity between the warp and weft wires, the analytic expressions of effective elastic modulus, shear modulus and Poisson’s ratio were obtained. The results show a good agreement between the theoretical and FEM, revealing that the theoretical method gives a reliable prediction. The in-plane effective elastic modulus is higher about one order of magnitude than the out-of-plane modulus. Conversely, the out-of-plane shear properties are superior to the in-plane properties. The effective modulus are significantly affected by wire radius R, opening length L and the ratio R/L. With the increase of R/L, the effective modulus of variant directions increases with different modalities. The wire waviness leads to much more in-plane stiffness-knockdown of wire mesh with thicker wires. Meanwhile, the out-of-plane stiffness is found to be weakened by the tiny contact area between the warp and weft wires. Stiffness reduction factors were proposed to describe the in-plane and out-of-plane stiffness-knockdown.

Journal

Composite StructuresElsevier

Published: Jan 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off