Effect of temperature on the photovoltaic performance and stability of solid-state dye-sensitized solar cells: A review

Effect of temperature on the photovoltaic performance and stability of solid-state dye-sensitized... Temperature is probably the most important outdoor variable that affects the photovoltaic performance of the dye sensitized solar cells (DSSCs). Overall stability of DSSCs depends on the properties of charge mediator (electrolyte) between photoanode and counter electrode. The liquid electrolytes show high power efficiency owing to their high dielectric constants to dissolve many ionic salts and additives. However, they may limit the outdoor applications in high temperature region, due to their low boiling points (highly volatile). The objective of this study is to highlight the prospects of solid state dye-sensitized solar cells and its benefit in higher temperature environment. The current review is comprised of four sections. In the first section (introduction), the effect of temperature on the conventional and solid-sate DSSCs is briefly described. In the second section, the mechanism of solid-state DSSCs is explained. Third section we covered recent advances in ss-DSSCs in detail. Finally, the scope of DSSCs in high temperature environment critically analyzed in section four. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Renewable and Sustainable Energy Reviews Elsevier

Effect of temperature on the photovoltaic performance and stability of solid-state dye-sensitized solar cells: A review

Loading next page...
 
/lp/elsevier/effect-of-temperature-on-the-photovoltaic-performance-and-stability-of-TQbsvGC2kU
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
1364-0321
D.O.I.
10.1016/j.rser.2017.05.114
Publisher site
See Article on Publisher Site

Abstract

Temperature is probably the most important outdoor variable that affects the photovoltaic performance of the dye sensitized solar cells (DSSCs). Overall stability of DSSCs depends on the properties of charge mediator (electrolyte) between photoanode and counter electrode. The liquid electrolytes show high power efficiency owing to their high dielectric constants to dissolve many ionic salts and additives. However, they may limit the outdoor applications in high temperature region, due to their low boiling points (highly volatile). The objective of this study is to highlight the prospects of solid state dye-sensitized solar cells and its benefit in higher temperature environment. The current review is comprised of four sections. In the first section (introduction), the effect of temperature on the conventional and solid-sate DSSCs is briefly described. In the second section, the mechanism of solid-state DSSCs is explained. Third section we covered recent advances in ss-DSSCs in detail. Finally, the scope of DSSCs in high temperature environment critically analyzed in section four.

Journal

Renewable and Sustainable Energy ReviewsElsevier

Published: Nov 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off