Effect of soil washing with biodegradable chelators on the toxicity of residual metals and soil biological properties

Effect of soil washing with biodegradable chelators on the toxicity of residual metals and soil... Soil washing with chelators is a promising and efficient method of remediating metals-contaminated soils. However, the toxicity of residual metals and the effects on soil microbial properties have remained largely unknown after washing. In this study, we employed four biodegradable chelators for removal of metals from contaminated soils: iminodisuccinic acid (ISA), glutamate-N,N-diacetic acid (GLDA), glucomonocarbonic acid (GCA), and polyaspartic acid (PASP). The maximum removal efficiencies for Cd, Pb, and Zn of 85, 55, and 64% and 45, 53, and 32% were achieved from farmland soil and mine soil using biodegradable chelators, respectively. It was found that the capacity of ISA and GLDA to reduce the labile fraction of Cd, Pb, and Zn was similar to that of the conventional non-biodegradable chelator ethylenediaminetetraacetic acid (EDTA). The leachability, mobility, and bioaccessibility of residual metals after washing decreased notably in comparison to the original soils, thus mitigating the estimated environmental and human health risks. Soil β-glucosidase activity, urease activity, acid phosphatase activity, microbial biomass nitrogen, and microbial biomass phosphorus decreased in the treated soils. However, compared with EDTA treatment, soil enzyme activities distinctly increased by 5–94% and overall microbial biomass slightly improved in the remediated soils, which would facilitate reuse of the washed soils. Based on soil toxicity tests that employed wheat seed germination as the endpoint of assessment, the washed soils exhibited only slight effects especially after ISA and GLDA treatments, following high-efficiency metal removal. Hence, ISA and GLDA appear to possess the greatest potential to rehabilitate polluted soils with limited toxicity remaining. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science of the Total Environment Elsevier

Effect of soil washing with biodegradable chelators on the toxicity of residual metals and soil biological properties

Loading next page...
 
/lp/elsevier/effect-of-soil-washing-with-biodegradable-chelators-on-the-toxicity-of-71AFrllEOc
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0048-9697
eISSN
1879-1026
D.O.I.
10.1016/j.scitotenv.2018.01.019
Publisher site
See Article on Publisher Site

Abstract

Soil washing with chelators is a promising and efficient method of remediating metals-contaminated soils. However, the toxicity of residual metals and the effects on soil microbial properties have remained largely unknown after washing. In this study, we employed four biodegradable chelators for removal of metals from contaminated soils: iminodisuccinic acid (ISA), glutamate-N,N-diacetic acid (GLDA), glucomonocarbonic acid (GCA), and polyaspartic acid (PASP). The maximum removal efficiencies for Cd, Pb, and Zn of 85, 55, and 64% and 45, 53, and 32% were achieved from farmland soil and mine soil using biodegradable chelators, respectively. It was found that the capacity of ISA and GLDA to reduce the labile fraction of Cd, Pb, and Zn was similar to that of the conventional non-biodegradable chelator ethylenediaminetetraacetic acid (EDTA). The leachability, mobility, and bioaccessibility of residual metals after washing decreased notably in comparison to the original soils, thus mitigating the estimated environmental and human health risks. Soil β-glucosidase activity, urease activity, acid phosphatase activity, microbial biomass nitrogen, and microbial biomass phosphorus decreased in the treated soils. However, compared with EDTA treatment, soil enzyme activities distinctly increased by 5–94% and overall microbial biomass slightly improved in the remediated soils, which would facilitate reuse of the washed soils. Based on soil toxicity tests that employed wheat seed germination as the endpoint of assessment, the washed soils exhibited only slight effects especially after ISA and GLDA treatments, following high-efficiency metal removal. Hence, ISA and GLDA appear to possess the greatest potential to rehabilitate polluted soils with limited toxicity remaining.

Journal

Science of the Total EnvironmentElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off