Effect of selenium induced seed priming on arsenic accumulation in rice plant and subsequent transmission in human food chain

Effect of selenium induced seed priming on arsenic accumulation in rice plant and subsequent... The south-east Asian countries are facing a serious threat of arsenic (As) toxicity due to extensive use of As contaminated groundwater for rice cultivation. This experiment was configured to assess the consequences of rice seed priming with selenium (Se) and cultivation in As free and As contaminated soil. The experiment was arranged in a factorial complete randomized design having two factors viz. seed priming and soil As stress with total twenty-five treatment combinations replicated thrice. Seed priming with Se promotes growth, yield under both As free and As stressed conditions. Se supplementation considerably enhanced the tiller numbers, chlorophyll content, plant height, panicle length and test weight of rice by 23.1%, 23.4%, 15.6% and 30.1%, respectively. When cultivated in As spiked soil and compared with control, Se primed plant enhance growth and yield by reducing As translocation from root to aerial parts, expressed as translocation factor (TF). A reduction of TF root to shoot (46.96%), TF root to husk (36.78–38.01%), TF root to grain (39.63%) can be seen among the Se primed plants than unprimed plants both cultivated in similar As stress. Besides these, a noteworthy reduction in estimated daily intake (EDI) and cancer risk (CR) were also noticed with the consumption of cooked rice obtained after cooking of brown rice of Se primed plants than their unprimed counterparts. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecotoxicology and Environmental Safety Elsevier

Effect of selenium induced seed priming on arsenic accumulation in rice plant and subsequent transmission in human food chain

Loading next page...
 
/lp/elsevier/effect-of-selenium-induced-seed-priming-on-arsenic-accumulation-in-pSdS1dMm5A
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
0147-6513
eISSN
1090-2414
D.O.I.
10.1016/j.ecoenv.2018.01.037
Publisher site
See Article on Publisher Site

Abstract

The south-east Asian countries are facing a serious threat of arsenic (As) toxicity due to extensive use of As contaminated groundwater for rice cultivation. This experiment was configured to assess the consequences of rice seed priming with selenium (Se) and cultivation in As free and As contaminated soil. The experiment was arranged in a factorial complete randomized design having two factors viz. seed priming and soil As stress with total twenty-five treatment combinations replicated thrice. Seed priming with Se promotes growth, yield under both As free and As stressed conditions. Se supplementation considerably enhanced the tiller numbers, chlorophyll content, plant height, panicle length and test weight of rice by 23.1%, 23.4%, 15.6% and 30.1%, respectively. When cultivated in As spiked soil and compared with control, Se primed plant enhance growth and yield by reducing As translocation from root to aerial parts, expressed as translocation factor (TF). A reduction of TF root to shoot (46.96%), TF root to husk (36.78–38.01%), TF root to grain (39.63%) can be seen among the Se primed plants than unprimed plants both cultivated in similar As stress. Besides these, a noteworthy reduction in estimated daily intake (EDI) and cancer risk (CR) were also noticed with the consumption of cooked rice obtained after cooking of brown rice of Se primed plants than their unprimed counterparts.

Journal

Ecotoxicology and Environmental SafetyElsevier

Published: May 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off