Effect of poly(ethylene glycol) on enzymatic hydrolysis and adsorption of cellulase enzymes to pretreated lignocellulose

Effect of poly(ethylene glycol) on enzymatic hydrolysis and adsorption of cellulase enzymes to... There is a need to develop the enzymatic hydrolysis of cellulose for production of ethanol from biomass. In recent years the inhibitory effects of lignin in lignocellulosic substrates has been the focus of several studies. This points to the importance of understanding the interactions between cellulose degrading enzymes and lignin. Surface active substances have been shown to adsorb to lignin surfaces resulting in reduction of unproductive enzyme binding. It is essential to understand the surface properties of both enzymes and lignin to develop pretreatment methods, surface active additives and engineering of cellulose degrading enzyme systems. This study investigates the PEG–lignin interaction as well as interactions between lignin and the enzyme modules of the Hypocrea jecorina ( Trichoderma reesei ) enzymes Cel7A and Cel7B. Interactions were monitored with 14 C labelled PEG 4000 and by measuring the enzymatic activity in solution. It was found that the dominating driving force of PEG adsorption on lignin is hydrophobic interaction. The effect of PEG addition on enzyme conversion of lignocellulose increased with higher temperature due to increased adsorption of PEG on lignin, thus resulting in a higher surface density of PEG on the surface. The hydrophobic adsorption of enzymes to lignin induces denaturation of enzymes on lignin surfaces. The addition of PEG to the enzyme hydrolysis at a temperature of 50 °C is suggested to hinder deactivation of enzymes by exclusion of enzymes from lignin surfaces. The adsorption of full-length Cel7B to lignin was stronger than for Cel7A. A more hydrophobic surface on the flat face of the cellulose binding module (CBM) together with an additional exposed aromatic residue on the rough face of Cel7B CBM compared to Cel7A CBM gives a higher affinity to lignin for the Cel7B enzyme. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Enzyme and Microbial Technology Elsevier

Effect of poly(ethylene glycol) on enzymatic hydrolysis and adsorption of cellulase enzymes to pretreated lignocellulose

Loading next page...
 
/lp/elsevier/effect-of-poly-ethylene-glycol-on-enzymatic-hydrolysis-and-adsorption-OWkTNGF0GI
Publisher site
See Article on Publisher Site

Abstract

There is a need to develop the enzymatic hydrolysis of cellulose for production of ethanol from biomass. In recent years the inhibitory effects of lignin in lignocellulosic substrates has been the focus of several studies. This points to the importance of understanding the interactions between cellulose degrading enzymes and lignin. Surface active substances have been shown to adsorb to lignin surfaces resulting in reduction of unproductive enzyme binding. It is essential to understand the surface properties of both enzymes and lignin to develop pretreatment methods, surface active additives and engineering of cellulose degrading enzyme systems. This study investigates the PEG–lignin interaction as well as interactions between lignin and the enzyme modules of the Hypocrea jecorina ( Trichoderma reesei ) enzymes Cel7A and Cel7B. Interactions were monitored with 14 C labelled PEG 4000 and by measuring the enzymatic activity in solution. It was found that the dominating driving force of PEG adsorption on lignin is hydrophobic interaction. The effect of PEG addition on enzyme conversion of lignocellulose increased with higher temperature due to increased adsorption of PEG on lignin, thus resulting in a higher surface density of PEG on the surface. The hydrophobic adsorption of enzymes to lignin induces denaturation of enzymes on lignin surfaces. The addition of PEG to the enzyme hydrolysis at a temperature of 50 °C is suggested to hinder deactivation of enzymes by exclusion of enzymes from lignin surfaces. The adsorption of full-length Cel7B to lignin was stronger than for Cel7A. A more hydrophobic surface on the flat face of the cellulose binding module (CBM) together with an additional exposed aromatic residue on the rough face of Cel7B CBM compared to Cel7A CBM gives a higher affinity to lignin for the Cel7B enzyme.

Journal

Enzyme and Microbial TechnologyElsevier

Published: Jul 2, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off