Effect of pH on the viscoelastic properties of pig gastric mucus

Effect of pH on the viscoelastic properties of pig gastric mucus Mucus is a biomaterial with peculiar, gel-like viscoelastic properties, and bearing different functionalities, depending on the different mucosae it covers. It is clear that these functionalities have to stay effective throughout the in vivo broad range of physiological pH values at which the mucus is exposed. We sought here to determine the effect of pH on the rheological properties of ex vivo mucus. We demonstrate that viscoelastic properties of gastric mucus are quite “stable” to pH changes, in marked contrast with the pH sensitivity of purified mucin gels. We also find that the rheological features of porcine gastric mucus are reversible when the system is first alkalized up to solubilization (pH > 8.5) and then re-acidified to its initial pH value. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Mechanical Behavior of Biomedical Materials Elsevier

Effect of pH on the viscoelastic properties of pig gastric mucus

Loading next page...
 
/lp/elsevier/effect-of-ph-on-the-viscoelastic-properties-of-pig-gastric-mucus-hwi2YdEKHr
Publisher
Elsevier
Copyright
Copyright © 2019 Elsevier Ltd
ISSN
1751-6161
eISSN
1878-0180
DOI
10.1016/j.jmbbm.2019.06.008
Publisher site
See Article on Publisher Site

Abstract

Mucus is a biomaterial with peculiar, gel-like viscoelastic properties, and bearing different functionalities, depending on the different mucosae it covers. It is clear that these functionalities have to stay effective throughout the in vivo broad range of physiological pH values at which the mucus is exposed. We sought here to determine the effect of pH on the rheological properties of ex vivo mucus. We demonstrate that viscoelastic properties of gastric mucus are quite “stable” to pH changes, in marked contrast with the pH sensitivity of purified mucin gels. We also find that the rheological features of porcine gastric mucus are reversible when the system is first alkalized up to solubilization (pH > 8.5) and then re-acidified to its initial pH value.

Journal

Journal of the Mechanical Behavior of Biomedical MaterialsElsevier

Published: Oct 1, 2019

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off